• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 23
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 153
  • 153
  • 153
  • 148
  • 53
  • 27
  • 23
  • 22
  • 21
  • 21
  • 20
  • 20
  • 18
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Polymer photonic interconnects

Bin Hashim, Aeffendi Helmi January 2012 (has links)
No description available.
12

All-copper chip-to-substrate interconnects for high performance integrated circuit devices

Osborn, Tyler Nathaniel. January 2009 (has links)
Thesis (M. S.)--Chemical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Kohl, Paul; Committee Member: Bidstrup Allen, Sue Ann; Committee Member: Fuller, Thomas; Committee Member: Hesketh, Peter; Committee Member: Hess, Dennis; Committee Member: Meindl, James.
13

Metal fill considerations for on-chip interconnects and spiral inductors /

Shilimkar, Vikas S. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2010. / Printout. Includes bibliographical references (leaves 97-106). Also available on the World Wide Web.
14

Sea of Leads electrical-optical polymer pillar chip I/O interconnections for gigascale integration

Bakir, Muhannad S., January 2003 (has links) (PDF)
Thesis (Ph. D.)--School of Electrical and Computer Engineering, Georgia Institute of Technology, 2004. Directed by James D. Meindl. / Vita. Includes bibliographical references (leaves 289-297).
15

Electromagnetic modeling of interconnections in three-dimensional integration

Han, Ki Jin. January 2009 (has links)
Thesis (Ph.D)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Madhavan Swaminathan; Committee Member: Andrew E. Peterson; Committee Member: Emmanouil M. Tentzeris; Committee Member: Hao-Min Zhou; Committee Member: Saibal Mukhopadhyay. Part of the SMARTech Electronic Thesis and Dissertation Collection.
16

Reliability study on the via of dual damascene Cu interconnects

Baek, Won-chong 28 August 2008 (has links)
Not available / text
17

The effect of ultra-violet light curing on the molecular structure and fracture properties of an ultra low-k material

Smith, Ryan Scott, 1970- 28 August 2008 (has links)
As the gate density increases in microelectronic devices, the interconnect delay or RC response also increases and has become the limiting delay to faster devices. In order to decrease the RC time delay, a new metallization scheme has been chosen by the semiconductor industry. Copper has replaced aluminum as the metal lines and new low-k dielectric materials are being developed to replace silicon dioxide. A promising low-k material is porous organosilicate glass or p-OSG. The p-OSG film is a hybrid material where the silicon dioxide backbone is terminated with methyl or hydrogen, reducing the dielectric constant and creating mechanically weak films that are prone to fracture. A few methods of improving the mechanical properties of p-OSG films have been attempted-- exposing the film to hydrogen plasma, electron beam curing, and ultra-violet light curing. Hydrogen plasma and electron-beam curing suffer from a lack of specificity and can cause charging damage to the gates. Therefore, ultra-violet light curing (UV curing) is preferable. The effect of UV curing on an ultra-low-k, k~2.5, p-OSG film is studied in this dissertation. Changes in the molecular structure were measured with Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. The evolution of the molecular structure with UV curing was correlated with material and fracture properties. The material properties were film shrinkage, densification, and an increase in dielectric constant. From the changes in molecular structure and material properties, a set of condensation reactions with UV light are predicted. The connectivity of the film increases with the condensation reactions and, therefore, the fracture toughness should also increase. The effect of UV curing on the critical and sub-critical fracture toughness was also studied. The critical fracture toughness was measured at four different mode-mixes-- zero, 15°, 32°, and 42°. It was found that the critical fracture toughness increases with UV exposure for all mode mixes. The sub-critical fracture toughness was measured in Mode I and found to be insensitive to UV cure. A simple reaction rate model is used to explain the difference in critical and sub-critical fracture toughness. / text
18

Growth of carbon nanotubes for interconnects applications

Esconjauregui, Cruz Santiago January 2011 (has links)
No description available.
19

Thermo-mechanical modeling and design of micro-springs for microelectronic probing and packaging

Haemer, Joseph Michael 05 1900 (has links)
No description available.
20

Helix-type compliant off-chip interconnect for microelectronic packaging

Zhu, Qi 08 1900 (has links)
No description available.

Page generated in 0.1382 seconds