• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 43
  • 16
  • 9
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 269
  • 269
  • 195
  • 88
  • 87
  • 76
  • 45
  • 45
  • 41
  • 40
  • 35
  • 34
  • 32
  • 30
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Stealth Assessment of Self-Regulative Behaviors within a Game-Based Environment

January 2014 (has links)
abstract: Students' ability to regulate and control their behaviors during learning has been shown to be a critical skill for academic success. However, researchers often struggle with ways to capture the nuances of this ability, often solely relying on self-report measures. This thesis proposal employs a novel approach to investigating variations in students' ability to self-regulate by using process data from the game-based Intelligent Tutoring System (ITS) iSTART-ME. This approach affords a nuanced examination of how students' regulate their interactions with game-based features at both a coarse-grained and fine-grain levels and the ultimate impact that those behaviors have on in-system performance and learning outcomes (i.e., self-explanation quality). This thesis is comprised of two submitted manuscripts that examined how a group of 40 high school students chose to engage with game-based features and how those interactions influenced their target skill performance. Findings suggest that in-system log data has the potential to provide stealth assessments of students' self-regulation while learning. / Dissertation/Thesis / M.A. Psychology 2014
202

Uma Arquitetura de tutor utilizando estados mentais / A tutor architecture using mental states

Giraffa, Lucia Maria Martins January 1999 (has links)
Esta tese situa-se na área de IA (Inteligência Artificial) aplicada à educação incluindo características interdisciplinares tanto da própria IA como de IE (informática na Educação). Faz-se também necessário constarem, aspectos referentes à Ciência da Computação e Educação a fim de melhor situar a complexidade e a dimensão do trabalho desenvolvido. A utilização de técnicas de IA na elaboração e no desenvolvimento de ambientes de ensino-aprendizagem computadorizados tem se constituído em objeto de investigação por parte dos pesquisadores da área de Informática aplicada à Educação, devido as suas potencialidades. A utilização de agentes na modelagem e no projeto de STI permite-nos resgatar antigos problemas em aberto, como por exemplo a melhoria da interação entre tutor e aluno e a possibilidade de investigação dos processos mentais em nível mais estratificado. A arquitetura descrita nesta tese utiliza a metodologia que vem sendo aplicada ao projeto de STI, onde são contempladas diferentes formas de se trabalhar com um determinado conhecimento (estratégias de ensino e táticas associadas), levando-se em consideração o tipo de usuário que está interagindo com o sistema. A arquitetura, elaborada segundo uma abordagem construtivista, prevê que o tutor seja menos diretivo e menos controlador das ações do aluno. O controle é feito na forma de monitoração para que o tutor funcione como um parceiro, ou seja, como facilitador do trabalho do aluno. Contudo, devido às características da modalidade escolhida para construção do protótipo (jogo educacional), precisamos ter algumas atitudes no tutor que garantam que o sistema não entre em colapso. O que inviabilizaria o trabalho do aluno. Nestas situações críticas, o tutor vai se comportar de maneira mais diretiva. Cabe salientar que a abordagem construtivista não significa dar liberdade total ao aluno nem privá-lo de qualquer tipo de assistência. Portanto, o que deve ser destacado é o grau de interferência do tutor, i.e., o quanto ele interfere no trabalho do aluno e se ele permite ou não que o aluno siga um caminho alternativo àquele que ele tem como o ideal para resolver o problema (heurísticas do tutor sobre o problema e forma de solução). Além destes aspectos educacionais inerentes a todo o projeto de software educacional (necessários num trabalho desta natureza), esta tese está inserida no contexto da pesquisa em agentes cognitivos modelados através de seus estados mentais. É importante salientar que os estados mentais utilizados neste trabalho (crenças, desejos, intenções e expectativas) funcionam como uma metáfora dos estudos mentais humanos. Por exemplo, quando se coloca a crença de um aluno a respeito de "lago", na realidade está se colocando a crença que temos a respeito da crença que o aluno possui a respeito de "lago". O mesmo acontece com os outros estados mentais aqui utilizados. Os diálogos reais foram registrados através de observação direta e posteriormente analisados a fim de se identificar os estados mentais relacionados. Perguntas adicionais foram feitas no sentido de obterem-se mais elementos para auxiliar na inferência do conjunto de estados mentais que o aluno possui naquele momento em que estava jogando. Após a observação de vários alunos jogando, identificou-se um certo padrão nas suas atitudes quando executavam uma ação. Observações sucessivas permitiram delinear o conjunto de estados mentais associados à ação do aluno. Tal conjunto foi utilizado como base para elaboração da coreografia. Estes dados servem de entrada para a construção do modelo do aluno mediante a interação com o tutor. No presente trabalho, nós apresentamos a modelagem de um STI através do uso da tecnologia de agentes utilizando a arquitetura de SMA (Sistemas Multiagentes). O STI é concebido como um SMA híbrido composto por um ambiente reativo (SMAR - Sistema Multiagente Reativo) e um "kernel" cognitivo (SMAC - Sistema Multiagente Cognitivo). O SMAR e o SMAC interagem entre si de para ampliar as informações quantitativas e qualitativas oferecidas aos alunos que utilizam o sistema. Estas informações disponíveis é que irão permitir ao tutor selecionar estratégias de ensino mais adequadas a um determinado tipo de aluno. A principal contribuição desta tese está centrada no "kernel" cognitivo. Nós propomos uma arquitetura para o tutor que permitirá a monitoração de dois alunos trabalhando conjuntamente. Além disso, propomos uma forma de selecionar o comportamento do tutor para oferecer auxílio personalizado aos alunos considerando o perfil de cada um. Esta arquitetura pretende ser uma alternativa de solução para uma questão importante na área de STI: Como o tutor pode selecionar, entre várias estratégias de ensino, a mais adequada para cada perfil de aluno? O grupo de pesquisa no qual este trabalho está inserido (GIA/UFRGS, sob orientação da Prof.a. Rosa Maria Viccari) tem realizado algumas avaliações experimentais, usando STI tradicionais e STI projetados e modelados através de sistemas multiagentes As contribuições científicas listadas no texto deste trabalho possibilitaram que o grupo avançasse sua pesquisa na abordagem mentalística através da criação de uma arquitetura para o tutor e favorecesse a integração do trabalho desenvolvido por Móra et al. [MOR97; MOR98]. A utilização do modelo computacional de agentes criado por Móra et al. gerou a implementação do "kernel" cognitivo. Os desafios inerentes a implementação da arquitetura proposta para o tutor ampliaram as características do ambiente criado por Móra et al. e favorecem a junção de dois trabalhos de tese supervisionados pela mesma orientadora [MOR99]. Portanto, a nova arquitetura proporcionou ganhos tanto para tais pesquisas, como para o avanço das pesquisas desenvolvidas pelo nosso grupo. / The present thesis has been elaborated within the AI (Artificial Intelligence) applied to Education realm, and it brings specific contributions to the STI (Intelligent Tutoring System) area. The use of AI techniques has been investigated by researchers of Computer Science applied to Education, due to its potentialities to improve educational systems. The agents' techniques used in the design of STI allow us to solve old problems opened in the area. For instance, the improvement of the interaction between tutor and student, and the possibility of tracing the mental processes in a more stratified way. The architecture described in this thesis uses the methodology applied to the modern STI projects: multiple strategies for the tutor (i.e., teaching strategies and associated tactics). This approach considers different forms of working with a certain piece of knowledge, and is taken into consideration to create the user profile, as well as to monitor the student interaction with the system. The architecture, designed according to a constructivist approach, expects the tutor to be less directive, and less controller of the student's actions. The control is made by an observation of students' actions by the tutor. The tutor works either as a student's partner or as a facilitator. However, due to the characteristics of the modality chosen for construction of the prototype (educational game), we needed to take some attitudes in the tutor in order to avoid the system to collapse. What would make unfeasible the student's work. In these critical situations, the tutor will behave in more directive way. It fits to point out that the construtivist approach does not mean to give total freedom to the student or to deprive it of any kind of attendance. Therefore, what should be note here is the degree of the tutor's interference, i.e., how it interferes with the student's work using its own set of heuristics. Besides these educational aspects, inherent to a project of Educational software, this thesis is inserted in the context of the research in cognitive agents modelled through their mental states (Believe, Desire, Intention, and Expectation). It is important to point out that the mental states used in this work are as a metaphor of the human mental states. For example, when the student's has a believe regarding "lake", in fact we area talking about belief that we have regarding the belief that the student possesses regarding about "lake". The same happens here with the other mental states used. The real dialogues were registered through direct observation in real situation (students playing with the game). They were analysed in order to identify the mental states connected with the student's actions. Additional questions were asked to obtain more elements to aid us to inference the group of mental states possessed by the student when he/she was playing. Successive observations allowed us to delineate the group of mental states associated to the student's action. Such group was used as a base for the choreography. These data were used as input for the construction to the student's model during the interaction with the tutor. In this work, we have presented the design of an STI with the use of architecture of MAS (Multi-agent System Architecture). The ITS is conceived as a hybrid MAS composed by a RMAS (Reactive Multi-agent System) and a "cognitive kernel" using the CMAS (Cognitive Multi-agent System). The RMAS and the CMAS interact with each other to enlarge the quantitative and qualitative information offered to the students that uses the system. These available information allow the tutor to select teaching strategies more adapted to a certain student type. The main contribution of this thesis is centred in the "cognitive kernel". We propose an architecture for the tutor that will allow the two students to work together. Besides, we propose a way to select the tutor behaviour in order to aid the students considering their personal profile. This architecture intends to be an alternative solution for an important question in ITS research: How can the tutor select, among several teaching strategies, the one that is more suitable for each student profile? The research group in which this work is placed (GIA/UFRGS - Artificial Intelligence Group), under the supervision of Profa. Rosa Maria Viccari, has been doing executing some experimental evaluations, using traditional ITS and ITS modelled through multi-agents systems techniques. The scientific contributions listed in this work allow the group to achive some interesting results in the research of STI using a mental approach. The tutor architecture favoured the integration of the X-BDI (eXecutable Belief Desire, and Intention model)) developed by Móra et al. The use the X-BDI allowed us to implement the "cognitive kernel". The inherent challenges posed by the implementation of the architecture of the tutor refined the XBDI environment. It favours the junction of two thesis works supervised done under the same supervisor[MOR99]. Therefore, the new architecture provided many gains for both researches, as well as for the progress of the research developed by our group.
203

Gestão de conteúdos em um ambiente de ensino de línguas baseado em sistema tutor inteligente com agentes-lexemas e semantização de imagens / Content management in a language teaching environment based on intelligent tutoring system with lexeme-agents and image semantization

Ávila, Ismael Mattos Andrade 17 August 2018 (has links)
Orientador: Ricardo Ribeiro Gudwin / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-17T09:20:31Z (GMT). No. of bitstreams: 1 Avila_IsmaelMattosAndrade_M.pdf: 8758109 bytes, checksum: 0b3286fb76efcd74e9bac32de5b1083e (MD5) Previous issue date: 2010 / Resumo: Este trabalho propõe uma arquitetura baseada em um sistema tutor inteligente (STI) para ambientes de ensino de línguas. A principal contribuição da proposta está no mecanismo de seleção e sequenciamento dos conteúdos, e baseia-se na estratégia de tratar cada lexema da língua-alvo (L2) como uma unidade pedagógica autônoma, cujo objetivo é ser aprendida instanciada na forma de um agente de software. Essa estratégia cria um arranjo bottom-up que é flexível o bastante para adaptar-se a mudanças nos objetivos pedagógicos e para reproduzir a natureza gradual, contextualizada e em grande medida inconsciente da aquisição da língua materna (L1). A arquitetura proposta é baseada em três principais pilares: (i) os agentes-lexemas da língua-alvo (L2) competem por um recurso limitado, a interface do curso; (ii) as imagens usadas nas cenas do curso são associadas a metadados que as descrevem semanticamente, influindo no comportamento dos agentes e (iii) uma ontologia da L2 define as relações semânticas e sintáticas entre seus lexemas e assim embasa as inferências feitas pelo sistema multiagente / Abstract: This work proposes an architecture based on an Intelligent Tutoring System (ITS) for language teaching environments. The main contribution of the proposal is in its content selection and sequencing mechanism, and is based on the strategy of treating each lexeme of the target language (L2) as an autonomous pedagogical unit, whose goal is to be learned instantiated as a software agent. This strategy creates a bottom-up approach that is flexible enough to adapt to changes in the pedagogical objectives and to reproduce the gradual, contextualized and somewhat unconscious nature of the first language (L1) acquisition. The proposed architecture is based on three main pillars: (i) the lexemeagents of the target language (L2) compete for a limited resource, the course interface; (ii) the images used in the course scenes are associated to metadata that describe them semantically, influencing the behavior of the agents and (iii) an ontology of L2 defines the semantic and syntactic relations of its lexemes and then underpins the inferences made by the multiagent system / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
204

Controle Inteligente de Tempo Livre em Tutoria Multissessão / Intelligent Control of Free Time in Multi-session Tutoring

GOMES, Viviane Margarida 22 August 2009 (has links)
Made available in DSpace on 2014-07-29T15:08:22Z (GMT). No. of bitstreams: 1 dissertacao_Viviane_Margarida_Gomes_EEEC_UFG_2009.pdf: 1229653 bytes, checksum: 6dded0cdb59c4c56c5eb4f04ee56788f (MD5) Previous issue date: 2009-08-22 / Intelligent Tutoring Systems are softwares to provide customized instruction by using techniques of Computational Intelligence. This research proposes the intelligent control of free time (break interval) in multi-session tutoring. The teaching strategy employs tutoring modules with the following steps: 1) video class, 2) exercise, 3) practical suggestion, 4) free time, and 5) revision exercise. As part of the learning environment, free time (step 4) can contribute to increase the knowledge retention. Based on the student performance in exercises, the proposed system uses Reinforcement Learning to control free time durations. The intelligent agent decides according to the policy that has been indicated by the Softmax method. Among the relevant points of this algorithm, it can be highlighted the optimistic initial values, the incremental implementation and the temperature adjustment (Gibbs distribution parameter) to the selection of action. Two student groups have participated of data collection. The experimental group (with intelligent control) has been compared to the control group (where decisions belong to the student). In the groups, the intelligent agent or the student determines the action that will be followed or, in more detail, if free time will be shorter, longer or maintained. In comparison, statistical data analysis have shown significant and equivalent gains in knowledge retention. However, students from experimental group have realized more accurately the role of free time as a component of the teaching strategy / Sistemas Tutores Inteligentes são programas para prover instrução personalizada a partir de técnicas de Inteligência Computacional. Esta pesquisa propõe o controle inteligente de tempo livre (pausas) em tutoria multissessão. A estratégia de ensino apresenta a tutoria em módulos, com as seguintes etapas: 1) vídeo-aula, 2) exercício, 3) sugestão prática, 4) tempo livre e 5) exercício de revisão. Como parte do ambiente de aprendizagem, o tempo livre (etapa 4) pode contribuir para aumentar a retenção de conhecimento. Baseado no desempenho do aluno nos exercícios, o sistema proposto utiliza Aprendizagem por Reforço para controlar a duração do tempo livre. O agente inteligente toma decisões de acordo com a política definida pelo método Softmax. Entre os pontos relevantes do algoritmo, destacam-se o valor inicial otimizado das ações, a implementação incremental e o ajuste da temperatura (parâmetro da distribuição de Gibbs) para a seleção de ação. Dois grupos de estudantes participaram da coleta de dados. O grupo experimental (com controle inteligente do tempo livre) foi comparado ao grupo controle (onde a decisão pertence ao próprio estudante). Nos grupos, o agente inteligente ou o aluno determina a ação a ser seguida, mais detalhadamente, diminuir, manter ou aumentar a duração do tempo livre. Por meio de estudo comparativo, a análise estatística dos dados mostrou ganhos significativos e equivalentes na retenção de conhecimento. Contudo, alunos do grupo experimental perceberam melhor o tempo livre como componente da estratégia de ensino
205

Um modelo de estudante baseado em redes Bayesianas para o estudo de fundamentos de orientação a objetos

Lima, Samuel Fontes 18 August 2010 (has links)
Made available in DSpace on 2016-03-15T19:37:32Z (GMT). No. of bitstreams: 1 Samuel Fontes Lima.pdf: 2071921 bytes, checksum: 2d66276b3ab526cbf68f0f727c2e1f3d (MD5) Previous issue date: 2010-08-18 / Nowadays, object oriented languages are among the most used ones. Recent studies with beginners have shown that the object oriented programming language (OOP) concepts are not so easy to learn. Students have difficulties not only in understanding those OOP concepts, but also in applying them to solving problems. Therefore, an Intelligent Tutoring System (ITS) is suggested in order to help in the learning process of these concepts. One of the most important challenge for ITS development is the individual treatment of student, which is mainly obtained by system adaptativity to the characteristics of each student. This adaptativity to student is a complex issue and the focus of several researches. It encloses several areas of personality such as: learning style, intelligence, previous knowledge, student background and emotions. Thus, the student model is extremely important because all individual information of student is in it. It is here where Artificial Intelligence (AI) techniques have been employed. This paper approaches the adaptativity issue of tutoring system to student knowledge through a student model based on Bayesian Network (BN). Taking into consideration that the student knowledge level is an inaccurate information, and even professors deal with this uncertainty, the Bayesian Networks (BNs), also known as Belief Network, have been chosen. They are considered proper for uncertain spheres for employing the probabilistic reasoning, which allows to identify a certain belief degree of student knowledge level. Therefore, the BNs have been employed in ITS in the inferences concerning student behavior as well as in the decision-making process concerning tutor actions. / Atualmente as linguagens orientadas a objeto encontram-se entre as mais utilizadas. Estudos recentes com alunos iniciantes demonstram que os conceitos de programação orientada a objetos (POO) não são tão fáceis de assimilar. Os estudantes encontram dificuldades não somente no entendimento dos conceitos de POO, mas também na aplicação deles na resolução de problemas. Diante disso, propõe-se o emprego de um Sistema Tutor Inteligente (STI) para auxiliar no processo de aprendizagem desses conceitos. Um dos principais desafios para o desenvolvimento de um STI é o tratamento individualizado do estudante, que é obtido principalmente por meio da adaptatividade do sistema às características de cada aprendiz. A adaptatividade ao aprendiz é uma questão complexa, foco de várias pesquisas, abrange várias características da personalidade: estilo de aprendizagem, inteligência, conhecimento anterior, histórico do aprendiz e as emoções. Dessa forma, o modelo do estudante é de fundamental importância, pois contém as informações individuais do aprendiz. É nesse ponto que as técnicas de Inteligência Artificial (IA) têm sido empregadas. Este trabalho aborda a questão da adaptatividade do sistema tutor ao conhecimento do estudante por meio de um modelo de aprendiz baseado em Rede Bayesiana. Considerando-se que o nível de conhecimento do aprendiz é uma informação imprecisa, e que até mesmo professores lidam com essa incerteza, optou-se pela utilização de Redes Bayesianas (RBs), também chamadas de Redes de Crença, que são consideradas adequadas para ambientes sob incerteza pois empregam o raciocínio probabilístico, o qual permite identicar um certo grau de crença sobre o nível de conhecimento do aprendiz. Devido a isso, RBs têm sido empregadas em STIs nas inferências sobre o comportamento do aprendiz e nas tomadas de decisões sobre as ações do tutor.
206

The carbon cycle and systems thinking : Conceptualizing a visualization-based learning system for teaching the carbon cycle that supports systems thinking

Mani Kashani, Mina January 2021 (has links)
Today, climate change, has become one of the greatest societal challenges of our time. This challenge requires an accurate understanding of climate change for making informed decisions regarding the environmental issues. The carbon cycle is one of the earth’s complicated cycles that has a critical role in the planet’s climate. Developing a thorough perception about this complex cycle uncovers how human activities impact the planet and reveals the connection between multiple environmental issues.Perceiving this complex cycle requires systems thinking skills that enable students to recognize components of the carbon cycle and understand the interrelating dynamic relationship between them. Establishing systems thinking skills and developing a thorough perception about the carbon cycle is a difficult matter for students. Adaptive visualisation-based tutoring systems have a great potential for facilitating teaching and learning cyclical models and systems thinking in schools. Such systems consider the students’ needs and provide personalised feedback that can guide individuals more effectively throughout the learning process. This thesis project intends to use diagrammatic visualizations, systems thinking, and adaptive tutoring systems as three technical approaches for conceptualising a learning system that aims to teach the carbon cycle. The framework of this thesis project is formed in relation to a research project called ‘Tracing Carbon’ focusing on science education for pupils on grade 7-9.
207

Automation in CS1 with the Factoring Problem Generator

Parker, Joshua B. 01 December 2009 (has links) (PDF)
As the field of computer science continues to grow, the number of students enrolled in related programs will grow as well. Though one-on-one tutoring is one of the more effective means of teaching, computer science instructors will have less and less time to devote to individual students. To address this growing concern, many tools that automate parts of an instructor’s job have been proposed. These tools can assist instructors in presenting concepts and grading student work, and they can help students learn to program more effectively. A growing group of intelligent tutoring systems attempts to tie all of this functionality into a single tool that is meant to be used throughout an entire CS course or series of courses. To contribute to this emerging area, the Factoring Problem Generator (FPG) is presented in this work. The FPG creates and grades problems in C in which students search for and extract blocks of repeated code into individual functions, learning to utilize parameters and return values as they do so. The problems created by the FPG are highly configurable by instructors such that the difficulty can be finely tuned to suit students’ individual needs. Instructors can choose whether or not to include arrays, pointers, certain elemental data types, certain operators, or certain kinds of statements, among other things. The FPG is additionally capable of generating a set of test cases for each generated problem. These test cases fully exercise students’ solutions by covering all branches of execution, and they ensure that program functionality does not change as students factor code into functions. Initial experimentation with the system has suggested that the FPG can be integrated into a beginning CS curriculum and with further refinement could become a standard tool in the CS classroom.
208

Pen-based Methods For Recognition and Animation of Handwritten Physics Solutions

Cheema, Salman 01 January 2014 (has links)
There has been considerable interest in constructing pen-based intelligent tutoring systems due to the natural interaction metaphor and low cognitive load afforded by pen-based interaction. We believe that pen-based intelligent tutoring systems can be further enhanced by integrating animation techniques. In this work, we explore methods for recognizing and animating sketched physics diagrams. Our methodologies enable an Intelligent Tutoring System (ITS) to understand the scenario and requirements posed by a given problem statement and to couple this knowledge with a computational model of the student's handwritten solution. These pieces of information are used to construct meaningful animations and feedback mechanisms that can highlight errors in student solutions. We have constructed a prototype ITS that can recognize mathematics and diagrams in a handwritten solution and infer implicit relationships among diagram elements, mathematics and annotations such as arrows and dotted lines. We use natural language processing to identify the domain of a given problem, and use this information to select one or more of four domain-specific physics simulators to animate the user's sketched diagram. We enable students to use their answers to guide animation behavior and also describe a novel algorithm for checking recognized student solutions. We provide examples of scenarios that can be modeled using our prototype system and discuss the strengths and weaknesses of our current prototype. Additionally, we present the findings of a user study that aimed to identify animation requirements for physics tutoring systems. We describe a taxonomy for categorizing different types of animations for physics problems and highlight how the taxonomy can be used to define requirements for 50 physics problems chosen from a university textbook. We also present a discussion of 56 handwritten solutions acquired from physics students and describe how suitable animations could be constructed for each of them.
209

Processus cérébraux adaptés aux systèmes tutoriels intelligents

Heraz, Alicia 10 1900 (has links)
Le module de l'apprenant est l'une des composantes les plus importantes d’un Système Tutoriel Intelligent (STI). L'extension du modèle de l'apprenant n'a pas cessé de progresser. Malgré la définition d’un profil cognitif et l’intégration d’un profil émotionnel, le module de l’apprenant demeure non exhaustif. Plusieurs senseurs physiologiques sont utilisés pour raffiner la reconnaissance des états cognitif et émotionnel de l’apprenant mais l’emploi simultané de tous ces senseurs l’encombre. De plus, ils ne sont pas toujours adaptés aux apprenants dont les capacités sont réduites. Par ailleurs, la plupart des stratégies pédagogiques exécutées par le module du tuteur ne sont pas conçues à la base d’une collecte dynamique de données en temps réel, cela diminue donc de leur efficacité. L’objectif de notre recherche est d’explorer l’activité électrique cérébrale et de l’utiliser comme un nouveau canal de communication entre le STI et l’apprenant. Pour ce faire nous proposons de concevoir, d’implémenter et d’évaluer le système multi agents NORA. Grâce aux agents de NORA, il est possible d’interpréter et d’influencer l’activité électrique cérébrale de l’apprenant pour un meilleur apprentissage. Ainsi, NORA enrichit le module apprenant d’un profile cérébral et le module tuteur de quelques nouvelles stratégies neuropédagogiques efficaces. L’intégration de NORA à un STI donne naissance à une nouvelle génération de systèmes tutoriels : les STI Cérébro-sensibles (ou STICS) destinés à aider un plus grand nombre d’apprenants à interagir avec l’ordinateur pour apprendre à gérer leurs émotions, maintenir la concentration et maximiser les conditions favorable à l’apprentissage. / The learner module is the most important component within an Intelligent Tutoring System (ITS). The extension of the learner module is still in progress, despite the integration of the cognitive profile and the emotional profile, it is not yet exhaustive. To improve the prediction of the learner’s emotional and cognitive states, many physiological sensors have been used, but all of these sensors are cumbersome. In addition, they are not always adapted to the learners with reduced capacities. Beside, most of the pedagogical strategies that are executed by the tutor module are based on no-live collections of data. This fact reduces their efficiency. The objective of our research is to explore the electrical brain activity and use it as a communication channel between a learner and an ITS. To reach this aim, we suggest to conceive, to implement and to evaluate the multi-agent system NORA. Integrated to an ITS, this one became a Brain Sensitive Intelligent Tutoring System (BS-ITS). Agents of NORA interpret the learner’s brain electrical signal and react to it. The new BS-ITS is the extension of an ITS and enrich the learner module with the brain profile and the tutor module with a new Neuropedagogical Strategies. We aim to reach more categories of learners and help them to manage their stress, anxiety and maintain the concentration, the attention and the interest.
210

Gamificação personalizada baseada no perfil do jogador / Personalized gamification oriented by user player types

Andrade, Fernando Roberto Hebeler 24 July 2018 (has links)
A Gamificação é uma técnica que a utiliza elementos de design de jogos em ambientes que não são jogos, visando aumentar a motivação e engajamento dos usuários e que vem ganhando espaço em diversos áreas como saúde, marketing e também na educação. Porém, ainda que o interesse pela técnica venha crescendo, os meios para sua aplicação nesses ainda não estão bem definidos e os resultados obtidos têm-se mostrado dependentes do contexto e da população alvo. Diversos autores atribuem essa inconstância nos resultados a problemas no design da gamificação, uma vez que a maior parte dos projetos tem utilizado abordagens one-size-fits-all, no qual todos os usuários utilizam o mesmo ambiente independente de suas preferências individuais. Diante desse cenário, tem-se proposto que a gamificação personalizada pode atender uma maior parcela dos usuários, adequando os ambientes gamificados ao perfil dos usuários. Uma das abordagens para a personalização da gamificação consiste no uso de tipologias de jogadores para determinar os elementos mais interessante para o usuário. No entanto, as tipologias utilizam estereótipos, criando constructos que ainda restringem as informações consideradas durante a personalização. Dessa forma, neste trabalho buscou-se investigar a personalização com base na teoria de motivações para se engajarem em jogos, que trata o perfil do usuário como um conjunto de diferentes subcomponentes motivacionais correlacionados, que se agrupam em macro-componentes. Para isso, adaptou-se a teoria para o contexto da gamificação e elaborou-se dois modelos o de Macro-Gamificação, o qual relaciona-se com a teoria de Autodeterminação e às necessidades de Competência, Relacionamento e Autonomia do usuário, e o de Micro-Gamificação, que relaciona os elementos de jogos a um determinado subcomponente motivacional e disponibilizá-lo mediante o interesse do usuário no subcomponente. Para avaliar então se a gamificação personalizada influencia no engajamento dos usuários quando comparada a gamificação não personalizada, os modelos foram implementados em um ambiente virtual de aprendizagem, preparado para criar os perfis de gamificação dos usuários dinamicamente e adaptar interface do em tempo real. Realizou-se então um estudo de caso com N=36, utilizando como domínio o estudo dos silabários do idioma japonês. Ao final do estudo foram identificados dois padrões de atuação no sistema com uma diferença de 65% de participação e que foi utilizado para segmentar os participantes. No segmento menos engajado, os participantes do grupo não personalizado apresentaram um engajamento aos grupos personalizados. Já no segmento dos usuários mais ativos o grupo utilizando o modelo Micro-Gamificado, apresentou-se mais engajado. Desse modo, não é possível afirmar que a gamificação personalizada proporcione um maior engajamento do que a gamificação sem personalização, embora os resultados sugiram que usuários que permanecem utilizando o sistema por mais tempo tem um maior engajamento no ambiente personalizado. Por fim, é possível afirmar que o desenvolvimento de sistemas gamificados com personalização ainda está em sua infância e por isso nesta pesquisa além de buscar evidencias sobre o impacto da gamificação personalizada no engajamento dos usuários, buscou-se também desenvolver ferramental para facilitar o processo para os membros da comunidade em ordem de impulsionar os avanços dessa área de pesquisa. / Gamification is a technique that uses game design elements in non-game context, to increase users motivation and engagement and that has been gaining space in several areas such as health, marketing and also in education. However, although the interest in the technique is growing, the means for its application are still not well defined and the results obtained have been shown to be dependent on the context and the population. Several authors attribute this resultsin the results to problems in gamification design, since most projects have been using an one-size-fitsall approach, in which all users uses the same environment independent of their preferences. Given this scenario, it has been proposed that the personalized gamification can adress a larger portion of users, adapting the gamified environments to users profiles One of the approaches to personalize the gamification is to use player typologies to determine which elements are most interesting to the user. However, typologies uses stereotypes, creating constructs that still restrict the information considered during customization. Thus, in this work, we sought to investigate personalization based on the theory of motivations to engage in games, which treats the user profile as a set of different correlated motivational subcomponents, which are grouped into macrocomponents. For this, the theory was adapted to the context of the gamification and two models were elaborated the Macro-Gamification, which is related to the theory of Self-determination and to the needs of Competence, Relationship and Autonomy of the user, and the Micro-Gamification, which relates the game elements to a particular motivational subcomponent and make it available through the users interest in the subcomponent. In order to evaluate whether personalized gamification influences user engagement when compared to non-personalized gamification, the models were implemented in a virtual learning environment, prepared to dynamically create users gamification profiles and adapt the interface in real time. A case study was then carried out with N = 36, using as a domain the study of syllabaries of the Japanese language. At the end of the study, two patterns of performance in the system with a difference of 65 % participation were identified and used to segment the participants. In the less engaged segment, the non-personalized group participants showed a higer engagement than the personalized groups. However, in the segment of the most active users the group using the Micro-Gamified model, presented itself more engaged. Thus, it can not be argued that personalized gamification provides greater engagement than non-personalized gamification, although the results suggest that users who remain using the system longer have a greater engagement in the personalized approach. Finally, it is possible to affirm that the development of personalized gamified systems is still in its infancy and for this reason, in this research, besides searching for evidence on the impact of personalized gamification on user engagement, we also sought to develop tooling to facilitate the process for the members of the community in order to boost the advances of this area of research.

Page generated in 0.1252 seconds