Spelling suggestions: "subject:"interjoint coordination"" "subject:"intrajoint coordination""
1 |
Assessing Inter-joint Coordination during WalkingChiu, Shiu-Ling, Chiu, Shiu-Ling January 2012 (has links)
Coordination indicates the ability to assemble and maintain a series of proper relations between joints or segments during motions. In Dynamical Systems Theory (DST), movement patterns are results of a synergistic organization of the neuromuscular system based on the constraints of anatomical structures, environmental factors, and movement tasks. Human gait requires the high level of neuromuscular control to regulate the initiation, intensity and adaptability of movements. To better understand how the neuromuscular system organizes and coordinates movements during walking, examination of single joint kinematics and kinetics alone may not be sufficient. Studying inter-joint coordination will provide insights into the essential timing and sequencing of neuromuscular control over biomechanical degrees of freedom, and the variability of inter-joint coordination would reflect the adaptability of such control.
Previous studies assessing inter-joint coordination were mainly focused on neurological deficiencies, such as stroke or cerebral palsy. However, information on how inter-joint coordination is modulated with different constraints, such as walking speeds, aging, brain injury or joint dysfunctions, are limited. This knowledge could help us in identifying the potential risks during walking and improve the performance of individuals with movement impairments. The purpose of the present study was to investigate the properties of inter-joint coordination pattern and variability during walking with different levels of neuromuscular system perturbations using a DST approach, including an overall neuromuscular systemic degeneration, a direct insult to the brain, and a joint disease.
We found that aging seemed to reduce the pattern adaptability of neuromuscular control. Isolated brain injury and joint disease altered the coordination pattern and exaggerated the variability, indicating a poor neuromuscular control. To improve gait performances for different populations, clinical rehabilitation should be carefully designed as different levels of neuromuscular system constraints would lead to different needs for facilitating appropriate coordinative movement.
This dissertation includes both previously published/unpublished and coauthored material.
|
2 |
Gait Variability for Predicting Individual Performance in Military-Relevant TasksUlman, Sophia Marie 03 October 2019 (has links)
Human movement is inherently complex, requiring the control and coordination of many neurophysiological and biomechanical degrees-of-freedom, and the extent to which individuals exhibit variation in their movement patterns is captured by the construct of motor variability (MV). MV is being used increasingly to describe movement quality and function among clinical populations and elderly individuals. However, current evidence presents conflicting views on whether increased MV offers benefits or is a hindrance to performance. To better understand the utility of MV for performance prediction, we focused on current research needs in the military domain. Dismounted soldiers, in particular, are expected to perform at a high level in complex environments and under demanding physical conditions. Hence, it is critical to understand what strategies allow soldiers to better adapt to fatigue and diverse environmental factors, and to develop predictive tools for estimating changes in soldier performance. Different aspects of performance such as motor learning, experience, and adaptability to fatigue were investigated when soldiers performed various gait tasks, and gait variability (GV) was quantified using four different types of measures (spatiotemporal, joint kinematics, detrended fluctuation analysis, and Lyapunov exponents).
During a novel obstacle course task, we found that frontal plane coordination variability of the hip-knee and knee-ankle joint couples exhibited strong association with rate of learning the novel task, explaining 62% of the variance, and higher joint kinematic variability during the swing phase of baseline gait was associated with faster learning rate. In a load carriage task, GV measures were more sensitive than average gait measures in discriminating between experience and load condition: experienced cadets exhibited reduced GV (in spatiotemporal measures and joint kinematics) and lower long-term local dynamic stability at the ankle, compared to the novice group. In the final study investigating multiple measures of obstacle performance, and variables predictive of changes in performance following intense whole-body fatigue, joint kinematic variability of baseline gait explained 28-59% of the variance in individual performances changes.
In summary, these results support the feasibility of anticipating and augmenting task performance based on individual motor variability. This work also provides guidelines for future research and the development of training programs specifically for improving military training, performance prediction, and performance enhancement. / Doctor of Philosophy / All people move with some level of inherent variability, even when doing the same activity, and the extent to which individuals exhibit variation in their movement patterns is captured by the construct of motor variability (MV). MV is being increasingly used to describe movement quality and function among clinical populations and elderly individuals. However, it is still unclear whether increased MV offers benefits or is a hindrance to performance. To better understand the utility of MV for performance prediction, we focused on current research needs in the military domain. Dismounted soldiers, in particular, are expected to perform at a high level in complex environments and under demanding physical conditions. Hence, it is critical to understand what strategies allow soldiers to better adapt to fatigue and diverse environmental factors, and to develop tools that might predict changes in soldier performance. Different aspects of performance were investigated, including learning a new activity, experience, and adaptability to fatigue, and gait variability was quantified through different approaches. When examining how individual learn a novel obstacle course task, we found that certain aspects of gait variability had strong associations with learning rate. In a load carriage task, variability measures were determined to be more sensitive to difference in experience level and load condition compared to typical average measures of gait. Specifically, variability increased with load, and the experienced group was less variable overall and more stable in the long term. Lastly, a subset of gait variability measures were associated with individual differences in fatigue-related changes in performance during an obstacle course. In summary, the results presented here support that it may be possible to both anticipate and enhance task performance based on individual variability. This work also provides guidelines for future research and the development of training programs specifically for improving military training, performance prediction, and performance enhancement.
|
3 |
Les adaptations biomécaniques de la marche sur des surfaces irrégulières chez l’enfant avec la paralysie cérébraleDussault-Picard, Cloé 07 1900 (has links)
La paralysie cérébrale est le trouble neuromoteur le plus fréquent chez l’enfant, représentant 2,3 cas sur 1000 naissances. La paralysie cérébrale se caractérise par des troubles du mouvement et de la posture, causés par une lésion sur le cerveau en développement. Comparativement aux enfants ayant un développement typique, les enfants avec la paralysie cérébrale présentent une capacité réduite à marcher, réduisant leur autonomie et leur participation dans divers contextes et environnements. Le contrôle moteur limité des enfants avec la paralysie cérébrale a été associé à leur capacité altérée à adapter simultanément le mouvement de plusieurs articulations (p. ex. trouble de coordination interarticulaire). Ce contrôle moteur altéré est associé à une marche variable et instable (p. ex. plus grande variabilité inter-cycle). Cependant, il y a un manque de connaissances sur les stratégies motrices utilisées par les enfants avec la paralysie cérébrale pour contrôler leur marche dans des contextes où la stabilité de la marche est compromise.
Les analyses quantifiées de la marche sont des évaluations cliniques en laboratoire, favorisant une meilleure prise de décision thérapeutique. Cependant, lors de ces analyses, l’enfant doit marcher sur une surface nivelée, sans irrégularité. Cette condition contrôlée et favorisant l’évaluation de la capacité maximale n’est pas représentative de la marche réelle de l’enfant dans ses déplacements quotidiens. L’évaluation de la marche sur des surfaces irrégulières est une évaluation plus écologique qui permettrait de mieux comprendre les défis rencontrés par l’enfant dans son quotidien, permettrait de détecter des troubles moteurs qui étaient non apparents dans des conditions facilitantes, et pourrait favoriser une meilleure décision clinique.
Ainsi, l’objectif général de cette thèse est de mieux comprendre l’intérêt d’utiliser des surfaces irrégulières pour évaluer les troubles de la marche de l’enfant avec une paralysie cérébrale. Pour ce faire, trois objectifs spécifiques ont été définis : (1) Établir l’état actuel des connaissances sur les adaptations biomécaniques de la marche sur des surfaces irrégulières de l’enfant avec une paralysie cérébrale. (2) Étudier la coordination interarticulaire des membres inférieurs et sa variabilité de l’enfant avec une paralysie cérébrale sur une surface régulière et des surfaces irrégulières. (3) Étudier les paramètres spatiotemporels de la marche et leur variabilité inter-cycle sur une surface irrégulière de l’enfant avec une paralysie cérébrale.
Pour ce faire, 17 enfants avec la paralysie cérébrale et 17 enfants avec un développement typique ont été recrutés. Les analyses quantifiées de la marche ont été réalisées dans le laboratoire d’analyse de la marche du Centre de réadaptation Marie Enfant du CHU Sainte-Justine. Lors des analyses, il était demandé à l’enfant de marcher 4 allers-retours sur la surface de laboratoire et sur 2 surfaces irrégulières (niveau d’irrégularité moyen et élevé). La position des marqueurs positionnés sur l’enfant était enregistrée par 12 caméras optoélectroniques. Les paramètres cinématiques, soit les angles articulaires de la hanche, du genou et de la cheville, et la coordination interarticulaire, ainsi que les paramètres spatiotemporels ont été calculés.
La première étude réalisée est une revue de portée qui a permis de mettre en lumière le manque de connaissances sur l’effet du niveau d’irrégularité sur les adaptations biomécaniques de la marche de l’enfant avec la paralysie cérébrale. La deuxième étude a exploité une base de données du laboratoire Aschau en Allemagne, et s’est intéressée aux stratégies de coordination interarticulaire et à sa variabilité chez l’enfant avec et sans la paralysie cérébrale sur une surface régulière. Une stratégie de coordination genou-hanche plus rigide (synchronisée) a été remarquée chez les enfants avec la paralysie cérébrale, comparativement aux enfants avec un développement typique. De plus, cette dernière met en lumière la relation positive entre l’altération du contrôle moteur (coordination interarticulaire synchronisée) et la pathologie de la marche de l’enfant avec la paralysie cérébrale (augmentation du Gait Profile Score). La troisième étude était basée sur la collecte de données réalisée au centre de réadaptation Marie Enfant et a permis d’identifier des troubles moteurs qui sont non apparents lors de la marche sur une surface de laboratoire, notamment une diminution de l'extension de la hanche en fin de phase d'appui et une stratégie de coordination genou-hanche trop rigide (synchronisée) pendant la phase d’oscillation. Basée sur la même collecte de données, la quatrième étude a mis en évidence une plus grande adaptation des paramètres spatiotemporels de la marche (c.-à-d. la largeur de pas et la variabilité de la vitesse, de la cadence et du ratio de marche) chez l’enfant avec une paralysie cérébrale, comparativement à l’enfant avec un développement typique, lors de la marche sur une surface irrégulière.
À ce jour, il s’agit des premiers travaux à avoir exploré les stratégies du contrôle moteur de l’enfant avec la paralysie cérébrale pour adapter la marche sur des surfaces irrégulières, ainsi qu’à avoir quantifié l’effet du niveau d’irrégularité de la surface parcourue. En conclusion, les résultats de ces travaux de thèse mettent de l’avant les avantages potentiels d’intégrer les surfaces irrégulières aux analyses cliniques de la marche afin de réaliser des évaluations plus écologiques, notamment en détectant des troubles de la marche qui sont non apparents sur une surface régulière de laboratoire. / Cerebral palsy is the most common neuromotor disorder in children, affecting 2.3 out of
every 1000 births. It is characterized by movement and posture disorders caused by an injury
to the developing brain. Compared to typically developing children, children with cerebral
palsy have a reduced ability to walk, which decreases their autonomy and participation in
various contexts and environments. The limited motor control of children with cerebral palsy
has been related to their impaired ability to simultaneously coordinate the movement of
multiple joints (e.g., inter-joint coordination disorder). This altered motor control is
associated with variable and unstable walking (e.g., increased inter-cycle variability).
However, there is a lack of knowledge about the motor strategies used by children with
cerebral palsy to control their walking in contexts where stability is compromised.
Quantified gait analyses are clinical evaluations conducted in laboratories that promote
better therapeutic decision-making. However, during these analyses, the child walks on a flat,
regular surface. This controlled condition, which facilitates the assessment of maximum
capacity, does not represent the child’s actual walking in daily life. Evaluating gait on
irregular surfaces is a more ecological assessment that would better understand the
challenges faced by the child in daily life, detect motor disorders not apparent in facilitating
conditions, and promote better clinical decision-making.
Thus, the objective of this thesis is to better understand the benefit of using irregular surfaces
to assess gait disorders in children with cerebral palsy. To achieve this, three objectives have
been defined: (1) Establish the current state of knowledge on the biomechanical adaptations
of walking on irregular surfaces in children with cerebral palsy. (2) Study the inter-joint
coordination of the lower limbs and its variability in children with cerebral palsy on regular
and irregular surfaces. (3) Investigate the spatiotemporal parameters of gait and their intercycle variability on an irregular surface in children with cerebral palsy.
For this purpose, 17 children with cerebral palsy and 17 typically developing children were
recruited. Quantified gait analyses were conducted in the gait laboratory of the Marie Enfant
Rehabilitation Centre at CHU Sainte-Justine. During the analyses, the child was asked to walk
back and forth four times on the laboratory surface and on two irregular surfaces (medium
and high irregularity levels). The position of markers placed on the child was recorded by 12
optoelectronic cameras. Kinematic parameters, such as the joint angles of the hip, knee, and
ankle, inter-joint coordination, and spatiotemporal parameters were calculated.
The first study conducted was a scoping review that highlighted the lack of knowledge on the
effect of irregularity levels on the biomechanical adaptations of gait in children with cerebral
palsy. The second study utilized a database from the Aschau laboratory in Germany and
focused on the inter-joint coordination strategies and their variability in children with and
without cerebral palsy on a regular surface. A more rigid (synchronized) knee-hip
coordination strategy was observed in children with cerebral palsy compared to typically
developing children. Additionally, this study highlighted the positive relationship between
impaired motor control (synchronized inter-joint coordination) and the gait pathology of
children with cerebral palsy (increased Gait Profile Score). The third study was based on data collected at the Marie Enfant Rehabilitation Centre and identified motor disorders that were
not apparent during walking on a laboratory surface, notably reduced hip extension at the
end of the stance phase and a too rigid (synchronized) knee-hip coordination strategy during
the swing phase. Based on the same data collection, the fourth study demonstrated greater
adaptation of spatiotemporal gait parameters (i.e., step width and variability of speed,
cadence, and walking ratio) in children with cerebral palsy compared to typically developing
children when walking on an irregular surface.
To date, these are the first works to have explored motor control strategies in children with
cerebral palsy to adapt walking on irregular surfaces, as well as to have quantified the effect
of surface irregularity level. In conclusion, the results of this thesis highlight the potential
benefits of integrating irregular surfaces into clinical gait analyses to conduct more ecological
evaluations, particularly in detecting gait disorders that are not apparent on a regular
laboratory surface.
|
Page generated in 0.1085 seconds