Spelling suggestions: "subject:"interacting galaxies"" "subject:"lnteracting galaxies""
11 |
Formation and evolution of star clusters in interacting galaxies / Entstehung und Entwicklung von Sternhaufen in wechselwirkenden GalaxienAnders, Peter 20 February 2006 (has links)
No description available.
|
12 |
On the Formation and Evolution of Dwarf Galaxies in Tidal Tails / Zur Entstehung und Entwicklung von Zwerggalaxien in GezeitenarmenWeilbacher, Peter 24 October 2002 (has links)
No description available.
|
13 |
Formation d’étoiles et d’amas stellaires dans les collisions de galaxies / Formation of stars and star clusters in colliding galaxiesBelles, Pierre-Emmanuel 28 November 2012 (has links)
Les fusions sont un évènement essentiel dans la formation des grandes structures de l’Univers; elles jouent un rôle important dans l’histoire de formation et l’évolution des galaxies. Outre une transformation morphologique, les fusions induisent d’importants sursauts de formation d’étoiles. Ces sursauts sont caractérisés par des Efficacités de Formation Stellaire (EFS) et des Taux de Formation Stellaire Spécifiques (TFSS), i.e., respectivement, des Taux de Formation Stellaire (TFS) par unité de masse gazeuse et des TFS par unité de masse stellaire, plus élevés que ceux des galaxies spirales. A toutes les époques cosmiques, les galaxies à sursaut de formation d’étoiles sont des systèmes particuliers, en dehors de la séquence définie par les galaxies spirales. Nous explorons l’origine du mode de formation stellaire par sursaut, à travers trois systèmes in interaction: Arp 245, Arp 105 et NGC 7252. Nous avons combiné des observations JVLA haute résolution de la raie à 21-cm, traçant le gaz Hi diffus, avec des observations GALEX dans l’UV, traçant les jeunes régions de formation d’étoiles. Nous sommes ainsi en mesure de sonder les conditions physiques locales du Milieu InterStellaire (MIS) pour des régions de formation d’étoiles indépendantes, et d’étudier la transformation du gaz atomique en gaz dense dans différents environnements. Le rapport SFR/HI apparaît bien plus élevé dans les régions centrales que dans les régions externes, indiquant une fraction de gaz dense plus élevée (ou une fraction de gaz HI moins élevée) dans les régions centrales. Dans les régions externes des systèmes, i.e., les queues de marées, où le gaz est dans une phase principalement atomique, nous observons des rapports SFR/ HI plus élevés que dans les environnements standards dominés par le HI, i.e., les régions externes des disques de spirales et les galaxies naines. Ainsi, notre analyse révèle que les régions externes de fusions sont caractérisées par des EFS élevées, par comparaison au mode de formation stellaire standard. Observer des fractions de gaz dense élevées dans les systèmes en interaction est en accord avec les prédictions des simulations numériques; ceci résulte d’une augmentation de la turbulence du gaz durant une fusion. La fusion affecte les propriétés de formation stellaire du système probablement à toutes les échelles, depuis les grandes échelles, avec une turbulence augmentant globalement, jusqu’aux petites échelles, avec des modifications possibles de la fonction de masse initiale. A partir d’une simulation numérique haute résolution d’une fusion majeure entre deux galaxies spirales, nous analysons les effets de l’interaction des galaxies sur les propriétés du MIS à l'échelle des amas stellaires. L’accroissement de la turbulence du gaz explique probablement la formation de Super Amas Stellaire dans le système. Notre étude de la relation SFR–HI dans les fusions de galaxies sera complétée par des données HI haute résolution pour d’autres systèmes, et poussée vers des échelles spatiales encore plus petites. / Mergers are known to be essential in the formation of large-scale structures and to have a significant role in the history of galaxy formation and evolution. Besides a morphological transformation, mergers induce important bursts of star formation. These starburst are characterised by high Star Formation Efficiencies (SFEs) and Specific Star Formation Rates, i.e., high Star Formation Rates (SFR) per unit of gas mass and high SFR per unit of stellar mass, respectively, compared to spiral galaxies. At all redshifts, starburst galaxies are outliers of the sequence of star-forming galaxies defined by spiral galaxies. We have investigated the origin of the starburst-mode of star formation, in three local interacting systems: Arp 245, Arp 105 and NGC 7252. We combined high-resolution JVLA observations of the 21-cm line, tracing the HI diffuse gas, with UV GALEX observations, tracing the young star-forming regions. We probe the local physical conditions of the Inter-Stellar Medium (ISM) for independent star-forming regions and explore the atomic-to-dense gas transformation in different environments. The SFR/HI ratio is found to be much higher in central regions, compared to outer regions, showing a higher dense gas fraction (or lower HI gas fraction) in these regions. In the outer regions of the systems, i.e., the tidal tails, where the gas phase is mostly atomic, we find SFR/HI ratios higher than in standard HI-dominated environments, i.e., outer discs of spiral galaxies and dwarf galaxies. Thus, our analysis reveals that the outer regions of mergers are characterised by high SFEs, compared to the standard mode of star formation. The observation of high dense gas fractions in interacting systems is consistent with the predictions of numerical simulations; it results from the increase of the gas turbulence during a merger. The merger is likely to affect the star-forming properties of the system at all spatial scales, from large scales, with a globally enhanced turbulence, to small scales, with possible modifications of the initial mass function. From a high-resolution numerical simulation of the major merger of two spiral galaxies, we analyse the effects of the galaxy interaction on the star forming properties of the ISM at the scale of star clusters. The increase of the gas turbulence is likely able to explain the formation of Super Star Clusters in the system. Our investigation of the SFR-HI relation in galaxy mergers will be complemented by high-resolution HI data for additional systems, and pushed to yet smaller spatial scales.
|
Page generated in 0.1096 seconds