Spelling suggestions: "subject:"1interaction dde configuration"" "subject:"1interaction dee configuration""
1 |
Calculs ab initio des intégrales de saut et d'échange dans des composées de métaux de transition.Suaud, Nicolas 21 December 2000 (has links) (PDF)
Ce travail porte sur l'évaluation des éléments de couplage entre sites magnétiques dans des complexes de transition. Nous discutons tout d'abord de la validité d'un hamiltonien de Heisenberg pour représenter des systèmes à deux électrons célibataires par centre et montrons les avantages d'un nouvel hamiltonien adapté à ce type de système. Sont ensuite présentés les résultats de calculs ab initio aidant à la compréhension du comportement de deux complexes de transition intéressants. Le premier est un complexe moléculaire organique formé autour d'un ion Ni(II) (d8, deux électrons célibataires dans deux orbitales magnétiques) qui a dans sa sphère de coordination deux radicaux nitroxydes (un électron célibataire chacun). Ce complexe a été obtenu sous deux formes cristallines très différentes. Dans la phase alpha, les deux nitroxydes sont équivalents et en position trans par rapport au centre de symétrie occupé par l'ion Ni(II). Dans la phase beta, les nitroxydes ne sont plus équivalents et l'angle "nitroxyde-Ni-nitroxyde" est proche de 90 degrés. Alors que la phase alpha présente des couplages antiferromagnétiques entre le nickel et les deux radicaux, la phase beta présente un couplage antiferromagnétique entre le nickel et l'un des deux nitroxydes tandis que le couplage avec l'autre nitroxyde est ferromagnétique. L'autre système étudié, NaV2O5, est un système cristallin à valence mixte. Il est l'un des deux seuls composés inorganiques pour lesquels une transition de Spin-Peierls a été observée. Cette transition est bien connue théoriquement et a été observée sur des composés organiques où le magnétisme est unidimensionnel. Par contre, elle est beaucoup moins bien connue dans des cas plus complexes de composés inorganiques tels CuGeO3 et NaV2O5. Nous étudions les structures haute température (au-dessus de la transition) et basse température de ce composé. La comparaison entre les résultats permet de mieux comprendre la nature de la transition.
|
2 |
Ab-initio study of x-ray spectroscopy of molecular ions / Calculs ab-initio des spectre de photoabsorption X d'ions moléculairesPuglisi, Alessandra 29 September 2017 (has links)
La signature spectroscopique des ions moléculaires est fondamentale pour l'étude et la caractérisation de plasma en astrophysique et en laboratoire. Différentes techniques peuvent être utilisées pour caractériser ces plasmas parmi lesquelles la spectroscopie de photoélectrons induits par rayons X et la photo-absorption X. L'objectif de cette thèse est la simulation des spectres de photo-absorption au seuil L (2p) des ions moléculaires de silicium SiHn+ (n= 1, 2, 3) et au seuil K (1s) des ions moléculaires de l'oxygène OHn+ (n=1, 2) et du carbone CHn+ (n= 1, 2) produits lors d'une décharge plasma. Nous avons développé différents protocoles numériques permettant de calculer les spectres d'absorption aux seuils K et L en combinant des méthodes de structures électroniques et de propagation de paquet d'ondes. Les optimisations de géométrie et le calcul des seuils d'ionisation (IP) sont obtenus en utilisant la théorie de la fonctionnelle de la densité (DFT). Les effets de relaxation électronique due à la formation d'un trou en couche interne sont pris en compte au niveau SCF (convergence de la fonction d'onde électronique à N-1 électrons). Les surfaces d'énergie potentielle (PES) et les moments de transition dipolaires sont calculés à un niveau Post-HF (Interaction de configurations, CI). L'introduction explicite du couplage spin-orbite à l'aide de l'opérateur Breit-Pauli est utilisée pour l'étude du processus d'excitation au seuil L du silicium. Les spectres théoriques calculés pour les différentes molécules étudiées présentent un accord raisonnable avec les mesures expérimentales. La présence d'états électroniques métastables produits lors de la décharge plasma est discutée. / Molecular ions cover important roles in study and characterization of astrophysical and laboratory plasma. To this purposes, different spectroscopic techniques are used among which we found the X-ray photoelectron spectroscopy and the X-ray photoabsorption spectroscopy. This PhD work is focused on the calculation of X-ray photoabsorption spectra of molecular ions of silicon, carbon and oxygen XHn+ (X= Si, C, O; n= 1, 2, 3). The former is excited on the L (2p) shell while the others on the K (1s) shell produced in plasma discharged. We developed numerical protocols which permits to compute with reasonable precision the K and L-shell photoabsorption spectra combining electronic structure and nuclear wavepacket propagation methods. The optimization of the geometries and the calculation of the ionization potentials (IP) are carried out using the density functional theory (DFT). The relaxation effects due to the core hole creation are taken into account at the self-consistent field (SCF) level. The potential energy surfaces (PES) and the dipole moment transitions are computed at the post Hartree-Fock (configuration interaction, CI) level. The spin-orbit coupling effect are explicitly taken into account through the Breit-Pauli operator. The theoretical results have been compared with the experimental data and they allow the interpretation of the experimental bands.
|
Page generated in 0.1844 seconds