• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DEVELOPMENT AND CHARACTERIZATION OF MINIATURIZED ELECTROCHEMICAL IMMUNOSENSORS

BANGE, ADAM F. 05 October 2007 (has links)
No description available.
2

AMPEROMETRIC CHARACTERIZATION OF A NANO INTERDIGITATED ARRAY (nIDA) ELECTRODE AS AN ELECTROCHEMICAL SENSOR

SAMARAO, ASHWIN K. 02 October 2006 (has links)
No description available.
3

A DISPOSABLE POLYMER LAB-ON-A-CHIP WITH MICRO/NANO BIOSENSOR FOR MAGNETIC NANO BEAD-BASED IMMUNOASSAY

DO, JAEPHIL January 2006 (has links)
No description available.
4

Conductive Nanocrystalline Cellulose Polymer Composite Film as a Novel Mediator in Biosensor Applications

Lee, Andrew Dong-Hyun 14 December 2011 (has links)
Recent biosensors using glucose oxidase enzyme to detect glucose (“blood sugar”) were made with intrinsic conducting polymers such as poly pyrrole (PPY) to mediate the reaction. PPY coated electrodes were difficult to employ via eletropolymerization because PPY is only soluble in solvents potentially damaging to enzymes. Nano crystalline cellulose – poly pyrrole (NCC-PPY) colloid circumvents this by forming natural, enzyme compatible, and hydrophilic films mechanically bound to electrodes using easy-to-disperse colloids. NCC-PPY was studied as mediator to investigate use in biosensor applications. Using NCC-PPY film casted on microfabricated interdigitated electrodes, a glucose biosensor with sensitivity factor of 20 was achieved. NCC-PPY showed enhanced catalysis with no enzyme inactivation and a total current of 2mA. Enhanced sensitivity was attributed to resistance changes of doped PPY, redox mediation, and compatibility of cellulose with enzyme.
5

Conductive Nanocrystalline Cellulose Polymer Composite Film as a Novel Mediator in Biosensor Applications

Lee, Andrew Dong-Hyun 14 December 2011 (has links)
Recent biosensors using glucose oxidase enzyme to detect glucose (“blood sugar”) were made with intrinsic conducting polymers such as poly pyrrole (PPY) to mediate the reaction. PPY coated electrodes were difficult to employ via eletropolymerization because PPY is only soluble in solvents potentially damaging to enzymes. Nano crystalline cellulose – poly pyrrole (NCC-PPY) colloid circumvents this by forming natural, enzyme compatible, and hydrophilic films mechanically bound to electrodes using easy-to-disperse colloids. NCC-PPY was studied as mediator to investigate use in biosensor applications. Using NCC-PPY film casted on microfabricated interdigitated electrodes, a glucose biosensor with sensitivity factor of 20 was achieved. NCC-PPY showed enhanced catalysis with no enzyme inactivation and a total current of 2mA. Enhanced sensitivity was attributed to resistance changes of doped PPY, redox mediation, and compatibility of cellulose with enzyme.
6

Redox cycling for an in-situ enzyme labeled immunoassay on interdigitated array electrodes

Kim, Sangkyung 20 August 2004 (has links)
This research is directed towards developing a more sensitive and rapid electrochemical sensor for enzyme labeled immunoassays by coupling redox cycling at interdigitated electrode arrays (IDA) with the enzyme label b-galactosidase. Coplanar and comb IDA electrodes with a 2.4 mm gap were fabricated and their redox cycling currents were measured. ANSYS was used to model steady state currents for electrodes with different geometries. Comb IDA electrodes enhanced the signal about 3 times more than the coplanar IDAs, which agreed with the results of the simulation. Magnetic microbead-based enzyme assay, as a typical example of biochemical detection, was done using the comb and coplanar IDAs. The enzymes could be placed close to the sensing electrodes (~10 mm for the comb IDAs) and detection took less than 1 min with a limit of detection of 70 amole of b-galactosidase. We conclude that faster and more sensitive assays can be achieved with the comb IDA. A paramagnetic bead assay has also been demonstrated for detection of bacteriophage MS2, used as a simulant for biothreat viruses, such as small pox. The immunoassay was carried out in a microfluidic format with the IDA, reference and counter electrodes integrated on the same chip. Detection of 90 ng/mL MS2 or 1.5x1010 MS2 particles/mL was demonstrated.

Page generated in 0.0791 seconds