• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 8
  • 2
  • Tagged with
  • 44
  • 21
  • 13
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gravimétrie atomique, amélioration de l'exactitude et nouvelles géométries

Bodart, Quentin 17 November 2010 (has links) (PDF)
L'objectif du gravimètre absolu est de déterminer la valeur de l'accélération de pesanteur g avec une incertitude relative de 10-9 pour le projet métrologique de "balance du watt". Nous avons développé pendant ma thèse une nouvelle enceinte à vide permettant l'évaluation des effets systématiques limitant. Le gravimètre a été rendu transportable et placé à côté de la balance du LNE. Le gravimètre repose sur des techniques d'interférométrie atomique, où un nuage d'atomes froids de 87Rb en chute libre est manipulé au moyen de transitions à deux photons. Nous avons réduit l'incertitude sur l'ensemble des biais au-dessous de l'objectif, excepté l'effet des aberrations du front d'onde des faisceaux lasers. Il est actuellement l'objet de nos investigations et nous cherchons à contrôler le mieux possible la trajectoire des atomes. Au cours de l'année 2010, notre gravimètre atomique a participé à des comparaisons "clefs" internationales. Les valeurs de g obtenues sont en accord, mais nous relevons des fluctuations de l'écart avec les autres gravimètres, liées en partie aux variations de l'effet d'aberration. Nous avons développé en parallèle trois nouvelles techniques de mesures d'interférométrie atomique. La première utilise un algorithme à trois coups qui rend la mesure robuste aux vibrations. La seconde consiste à diffracter les atomes simultanément au moyen des quatre champs présents dans l'enceinte à vide afin de doubler l'aire de l'interféromètre et donc sa sensibilité intrinsèque. Enfin nous avons conçu et caractérisé une pyramide creuse, qui permet de substituer aux différents lasers un unique large faisceau, afin de créer un gravimètre atomique transportable compact.
2

Etude de faisabilité d'un lidar Rayleigh-Mie pour la mesure à courte distance de la vitesse de l'air de sa température et de sa densité.

Cezard, Nicolas 16 May 2008 (has links) (PDF)
Le lidar (acronyme de Light Detection and Ranging) est un instrument couramment utilisé de nos jours pour la caractérisation des propriétés physico-chimiques de l'atmosphère. Dans le domaine de l'aéronautique, on pourrait l'employer pour caractériser l'atmosphère amont d'un aéronef porteur. Parmi les applications courte-portée, citons l'optimisation du vol ou la détection de turbulence. Le principe du lidar consiste à émettre un faisceau laser dans l'atmosphère pour analyser le signal rétrodiffusé. En général, deux types de signaux coexistent, aux propriétés spectrales très différentes : le signal Rayleigh, diffusé par les molécules de l'air, et le signal Mie, diffusé par les particules plus massives (poussières, aérosols...). Ce travail de thèse évalue la faisabilité d'un lidar mixte Rayleigh-Mie, capable d'exploiter simultanément les deux types de signaux. L'objectif est la mesure à courte portée (20-50 m) des paramètres de vitesse, température et densité de l'air. Le point d'étude essentiel concerne la méthode d'analyse spectrale du signal : un système utilisant deux interféromètres de Michelson à imagerie de franges est notamment proposé, et ses performances comparées avec celle de l'interféromètre de Fabry-Perot, plus classique. La faisabilité de la mesure de vitesse par interféromètre de Michelson à imagerie de franges est expérimentalement démontrée. Pour cela, un système lidar à 355 nm a été développé, et une méthode de traitement de signal spécifiquement conçue pour l'analyse des franges. On montre que des mesures robustes peuvent être réalisées en plein jour, insensibles aux dérives de fréquence du laser et aux perturbations thermo-mécaniques de l'interféromètre.
3

Mise en œuvre et exploitation d'un spectromètre imageur pour l'étude sismique et la dynamique atmosphérique des planètes géantes / Development and tests of an imaging interferometer for seismology of the giant planets

Gonçalves, Didier 28 March 2018 (has links)
Connaitre précisément la structure interne des corps célestes est indispensable pour, à la fois, comprendre la physique qui régit leur existence et le processus qui leur a donné naissance. La sismologie, d’abord appliquée à la Terre puis au soleil, s’est révélée être un outil très efficace pour sonder leurs intérieurs. Dans les années 70 (Vorontsov et al 1976), des premiers travaux théoriques ont étudié la possibilité d’une sismologie des planètes géantes gazeuses. Les premières tentatives de mesures d’oscillations ont eu lieu à la fin des années 80. La détection des modes d’oscillations de Jupiter s’est avérée une entreprise très délicate en raison de sa rotation rapide. Pour augmenter les chances de détection, un instrument spécifique a été construit au début des années 2000 à l’OCA. Cet instrument, appelé SYMPA, est un spectromètre imageur de type Mach-Zehnder capable de produire une carte de vitesse radiale de Jupiter. Une détection de modes d’oscillations sur Jupiter par cet instrument a été publiée par Gaulme et al en 2011. Une version améliorée de l’instrument (appelé DSI) a été proposée pour la mission spatiale JUICE à destination de Jupiter, et un nouveau prototype a été construit dans ce but. Par la suite, le projet s’est réorienté vers un programme d’observation depuis le sol sous la forme d’un réseau de trois télescopes répartis en longitude (USA, France, Japon) et financé par l’ANR à partir de 2015 (ANR JOVIAL). L’intérêt de la mise en réseau est d’assurer la continuité des données (météo mise à part). L’instrument étant capable de produire des cartes de vitesse radiales, le projet permet également l’étude de la dynamique atmosphérique des planètes géantes. Ce travail de thèse s’inscrit dans le contexte de préparation de JOVIAL, avec pour objectif de caractériser l’instrument en laboratoire et d’identifier les problèmes liés aux conditions réelles d’observation. Les mesures en laboratoires ont montré des performances conformes aux attentes, avec un bruit de mesure propre à l’instrument inférieur au bruit de photon attendu sur Jupiter. Les premières mesures sur le ciel avec un télescope ont mis en évidence une sensibilité de l’instrument au degré de polarisation de la lumière ainsi qu’une dérive de la vitesse mesurée liée aux instabilités de position de la pupille pendant les observations. Le design de l’instrument et de son interface avec le télescope a été revu pour résoudre ces problèmes. Plusieurs campagnes d’observations de Jupiter ont été réalisées, permettant de mettre sur pied une chaine complète de traitement des données, dont la validité a été vérifiée par des simulations réalistes. Les observations de Jupiter ont donné des résultats scientifiques particulièrement intéressants. L’analyse des données de deux campagnes de 2015 et 2016 a fourni des séquences temporelles de cartes de vitesses radiales de Jupiter. Une première étude a consisté à chercher dans ces cartes la signature des vents zonaux et de les comparer aux mesures réalisées par suivi des nuages sur des images résolues (cloud-tracking). Une telle mesure n’avait jamais été faite par effet Doppler. Le résultat, bien qu’affecté par des biais de mesures identifiés, montre des profils de vents stables d’une année sur l’autre et en cohérence avec les valeurs issues du cloud-tracking, sauf au niveau de la partie nord de la bande équatoriale de Jupiter. La mesure Doppler suggère en effet une vitesse de vent bien inférieure à la vitesse apparente dans cette zone, ce qui a potentiellement des implications sur les modèles de dynamique atmosphérique. Ces résultats sont très importants pour mieux comprendre les mesures de la sonde Juno, actuellement en orbite autour de Jupiter. L’analyse fréquentielle des données temporelles a été abordée en fin de thèse. Les analyses préliminaires ne semblent pas pour l’instant reproduire la détection de SYMPA. Une analyse plus poussée est nécessaire avant de conclure à une absence du signal. / To know precisely the internal structure of the celestial bodies is essential to both to understand the physics which governs their existence, and the process which gave them birth. First applied to the Earth and then to the sun, seismology has proven to be a very effective tool to sound their interiors. It has become natural and legitimate to question the possibility of seismology of gaseous giant planets. The first theoretical work was carried out in the 1970s (Vorontsov et al. 1976), and the first attempts to measure oscillations at the end of the 1980s. The detection of Jupiter's oscillating modes turned out to be very difficult (reduced flux, small apparent diameter, fast rotation ...). To increase the chances of detection, a specific instrument was built in the early 2000s at the OCA. This instrument, called SYMPA, is a Mach-Zehnder-type imaging spectrometer enable to produce radial velocity maps of Jupiter. A first detection of acoustic modes on Jupiter with this instrument was published by Gaulme et al in 2011. An improved version of the instrument (called DSI), based on the same principle, was built in the wake, with the primary objective of boarding a spacecraft to Jupiter. The project was finally reoriented towards an observation program from the ground in the form of a network of three telescopes equidistant in longitude (USA, France, Japan) and supported by the ANR fund starting in 2015 (ANR JOVIAL). The interest of the network is to ensure the continuity of data (weather apart). The instrument being able to produce radial velocity maps, the project also aims to study the atmospheric dynamics of giant planets. This thesis work is part of a preparation for JOVIAL, with the aim of characterizing the instrument and identifying the problems related to real observations conditions. Laboratory measurements showed expected performances with an instrumental noise level (related to thermal fluctuations) lower than expected photon noise on Jupiter. The first measurements on the sky with a telescope showed a sensitivity of the instrument to the degree of polarization of the light as well as drifts of the velocity measurements due the motions of the pupil position. Some adjustments of the design of the instrument and its interface with the telescope were necessary to solve these issues. Several Jupiter observation campaigns were carried out during the thesis, allowing the development of full data processing software. The complete procedure was tested against simulated data and validated. Two observations runs in 2015 and 2016 were analyzed to produce time sequences of radial velocity maps of Jupiter, providing very interesting scientific results. First, the maps were analyzed to look for the signature of the zonal winds and to compare them with the measurements made by cloud-tracking. Such measurements by Doppler effect were never made before. The result, albeit affected by measurement biases, showed stable year-to-year wind patterns and coherent results with cloud-tracking measurements, except at the northern part of the Jovian’s equatorial band. The Doppler measurement indeed suggests a wind speed well below the apparent speed in this area, which potentially has implications for the theory of atmospheric dynamics and will be helpful to interpret the Juno (a spacecraft presently orbiting Jupiter) measurements. Frequency analysis of temporal data was undertaken at the end of the thesis. The preliminary results do not seem for the moment to reproduce the SYMPA detection. Further analysis is necessary before concluding if the signal is absent or attenuated.
4

Étude de la cinématique et de la distribution de masse des galaxies spirales NGC 247, NGC 300, NGC 7793

Martineau, Nancy January 2002 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
5

Outils théoriques pour la gravitation expérimentale et applications aux interféromètres et cavités à ondes de matière.

Delva, Pacôme 14 December 2007 (has links) (PDF)
La gravitation expérimentale a connu des développements spectaculaires ces vingt dernières années en partie grâce aux développements de la physique atomique. A l'aide de techniques de refroidissement sophistiquées, il est possible d'exploiter le comportement ondulatoire de la matière. L'interférométrie atomique est devenue une méthode de fabrication d'horloges et de senseurs inertiels parmi les plus précis et la condensation de Bose-Einstein permet<br />l'observation de phénomènes quantiques macroscopiques. Dans cette thèse, nous explorons quelques applications possibles des ondes de matière pour les expériences de gravitation en champ faible. En première partie, nous développons des outils génériques pour la description théorique des expériences en relativité générale. Nous les appliquons dans la seconde partie: nous calculons la sensibilité des interféromètres à ondes de matière à l'effet Lense-Thirring, puis aux ondes gravitationnelles, et nous les comparons aux interféromètres laser. Enfin nous calculons la probabilité de changement d'état d'une cavité à onde de matière en interaction avec une onde gravitationnelle.
6

Système d'interférences radiofréquences pour la cryptographie par chaos appliquée aux transmissions hertziennes

Pallavisini, A. 09 July 2007 (has links) (PDF)
La sécurisation des systèmes de transmission de données est un enjeu majeur de la société de l'information. Ce travail aborde une solution potentielle originale, dédiée aux transmissions radio-fréquences en espace libre, et en utilisant un mode de sécurisation à base de comportements chaotiques. La porteuse chaotique est générée par un oscillateur non linéaire à retard, qui permet d'appliquer la méthode de sécurisation par porteuse chaotique en modulation de fréquence directement au niveau de la couche physique du système de transmission. L'étude et la réalisation expérimentale du principe de génération de chaos en modulation de fréquence (FM) est présentée à partir d'une transformation non linéaire construite par profil de filtrage RF à résonances multiples, et l'autre en utilisant un montage optoélectronique original réalisant la non linéaire à partir d'un interféromètre radio-fréquence à fibre optique. Dans chacun, un système complet d'émission-réception par porteuse chaotique FM démontré.
7

Contrôle longitudinal et caractérisation optique du détecteur Virgo

Kreckelbergh, Stephane 10 October 2005 (has links) (PDF)
Le détecteur Virgo est constitué d'un interféromètre de Michelson avec des cavités Fabry-Perot de 3 km de long dans les bras et utilise la technique de recyclage de puissance. Il a pour but la détection directe des ondes gravitationnelles émises par des sources astrophysiques. <br />Pour atteindre sa sensibilité, Virgo doit être emmené à son point de fonctionnement par des asservissements tant longitudinaux qu'angulaires. Pour cela, nous avons mis en place un algorithme de contrôle longitudinal ("lock") qui partant d'un interféromètre libre l'emmène à son point de fonctionnement. Pour arriver à ce résultat, nous utilisons la technique de Pound-Drever qui nous permet d'avoir un signal sensible à la variation de la position d'une cavité optique par rapport à la résonance. <br />Nous avons developpé deux algorithmes. Le premier s'inspire de celui utilisé par la collaboration LIGO. Nous arrivons au point de fonctionnement en contrôlant successivement les quatres longueurs caractéristiques de Virgo. L'application de cet algorithme sur l'instrument s'est soldé par un échec dont les causes sont liées aux différences entre Virgo et LIGO. Le deuxième algorithme nous permet de contrôler simultanément ces quatres longueurs en étant sur la mi frange de l'interféromètre de Michelson. Nous emmenons ensuite l'interféromètre en quelques minutes à son point de fonctionnement de manière déterministe. <br />Une autre partie de la thèse consiste en la mesure in situ des paramètres optiques nécessaires à la compréhension de l'instrument. Ceci nous a permis à la fois de faire accorder la simulation avec les données et de préparer l'algorithme d'acquisition du lock de Virgo. <br />Enfin, nous nous intéressons à l'impact de la technique d'Anderson utilisée pour le contrôle angulaire des miroirs sur le contrôle longitudinal des cavités optiques. Nous en montrons le mécanisme et évaluons son impact sur le lock de Virgo.
8

Interférométrie annulante pour l'exoplanétologie - Étude et développement du recombineur du banc PERSEE

Jacquinod, Sophie 10 March 2010 (has links) (PDF)
Depuis maintenant 15 ans, le domaine de la détection d'exoplanètes s'est largement développé. L'utilisation de méthodes de détection, indirectes d'abord, a permis de découvrir pas moins de 420 nouveaux "mondes", parfois surprenants. Forts de cela, les scientifiques cherchent maintenant à caractériser ces exoplanètes. Ainsi des projets spatiaux, se basant sur la méthode de l'interférométrie annulante, ont pour but de réaliser des spectres de planètes géantes et telluriques. Compte tenu de la complexité de ces missions, la nécessité de tester, d'abord en laboratoire, certains aspects technologiques comme le principe de l'interférométrie annulante, est rapidement apparue. En 2006, le CNES a décidé de mener une étude R&D de la charge utile d'un interféromètre annulant a deux télescopes (typiquement l'instrument PEGASE). Ainsi, le banc de test PERSEE (Pegase Experiment for Research and Stabilization of Extreme Extinction) est né. Ce banc est le premier banc de test couplant un interféromètre annulant avec un système permettant d'introduire des perturbations calibrées typiques du vol en formation et de les corriger grâce a des boucles actives. Cette thèse s'inscrit dans le cadre de la conception, de l'étude et du développement d'un des sous-systèmes du banc : le module de recombinaison interférométrique. Ce module est dérivé du concept de l'interféromètre de "Mach-Zehnder Modifié" proposé par Serabyn et al. (2001). Il a la particularité de combiner à la fois les faisceaux scientifiques permettant de faire de l'interférométrie annulante et les faisceaux du système de métrologie, ceci afin de minimiser les chemins différentiels entre les deux voies.
9

Etude, alignement et contrôle de surfaces optiques segmentées ou discontinues. Applications en Sciences de l'Univers

Hénault, F. 10 September 2010 (has links) (PDF)
Les surfaces optiques segmentées et discontinues sont connues depuis l'Antiquité. Elles ont fait l'objet de nombreuses applications, dont la première rapportée est celle des “miroirs ardents” d'Archimède conçus pour concentrer l'énergie solaire sur les voiles des vaisseaux ennemis, et ainsi y mettre feu. Cette idée toujours brûlante a présidé à la construction des fours solaires actuels destinés à tester la résistance de matériaux placés dans des conditions extrêmes, ou de centrales hélio-électriques dédiées à la production d'électricité domestique. Bien que les précisions de surface requises pour ces installations soient de l'ordre de quelques millimètres, leurs méthodes de conception, de réglage et de contrôle n'en font pas moins appel aux techniques de l'optique instrumentale moderne: ainsi le principe de la “méthode de rétro-visée” testée au cours de mon doctorat à l'IMP d'Odeillo s'apparente naturellement à ceux des senseurs de surface d'onde équipant aujourd'hui les systèmes d'optique adaptative nécessaires aux observations astrophysiques. Mais les surfaces optiques discontinues ne servent pas qu'à concentrer l'énergie lumineuse. Les expériences historiques de Fizeau et Michelson ont démontré leur capacité à mesurer des paramètres astrophysiques à très haute résolution angulaire, et ouvert la voie à une nouvelle génération d'instruments d'observation astronomique: interféromètres stellaires dont les ouvertures multiples peuvent être séparées par plusieurs centaines de mètres (tel le VLTI), télescopes géants équipés de miroirs primaires segmentés (les Keck au sol ou le JWST dans l'espace), ou de futuristes hyper-télescopes spatiaux en quête d'images directes de systèmes planétaires extra-solaires. De telles installations, dont les cahiers des charges deviennent toujours plus ambitieux, doivent être cophasés au dixième de longueur d'onde, voire au millième dans le cas d'un interféromètre à frange noire. Il devient alors nécessaire de développer de nouveaux moyens de modélisation et de contrôle de ces systèmes complexes, dont quelques-uns sont présentés ici dans le cadre des futurs télescopes de diamètre supérieur à 30 mètres (ELT) et des interféromètres chasseurs d'exo-planètes tels que Darwin et TPF-I. Les surfaces optiques discontinues sont également présentes dans le domaine de la spectroscopie: outre les classiques réseaux de diffraction, on les retrouve au cœur des spectro-imageurs de nouvelle génération, capables de former simultanément sur un même détecteur l'image d'un objet astrophysique et sa décomposition spectrale en tous points. Ainsi l'instrument MUSE, équipé de systèmes découpeurs d'images composés de matrices de miroirs discontinus, permettra-t-il au VLT d'observer les galaxies primordiales dans un avenir proche. Au vu de tant d'applications, il ressort clairement que les techniques de réalisation et de contrôle des surfaces optiques segmentées ou discontinues constitueront la clé de la science astrophysique du siècle à venir. Une longue route reste à accomplir, dont le banc de test SIRIUS développé à l'Observatoire de la Côte d'Azur afin d'évaluer les performances des hyper-télescopes, des interféromètres à frange noire, et de leurs méthodes de cophasage, pourrait constituer une étape décisive.
10

Conception et réalisation d'un interféromètre polarimétrique : application à la nanométrologie dimensionnelle

Xu, Suan 14 January 2009 (has links) (PDF)
Pour répondre à une demande croissante des nanotechnologies, et plus particulièrement en nanométrologie dimensionnelle, une méthode originale de mesure et de contrôle de position à l'échelle sub-nanométrique a été développée et mise en œuvre. Cette méthode est basée sur un interféromètre de Michelson combiné à un polarimètre et une électronique de contrôle. Le déplacement du miroir mobile est relié à l'état de polarisation en sortie de l'interféromètre. Une fois l'expérience mise en œuvre, nous avons réalisé des déplacements avec des pas de positions nanométriques. La répétabilité obtenue est sub-nanométrique sur des déplacements allers-retours pour des courses micrométriques. L'étude de l'influence de l'état de polarisation à la sortie de l'interféromètre sur la mesure et le contrôle de la position a été menée. Les autres sources d'erreurs classiques ont également été étudiées pour établir un bilan d'erreur complet. Dans un environnement contrôlé, la méthode développée pourrait s'appliquer à des déplacements de courses millimétriques, conduisant à de très nombreuses applications en nanotechnologie.

Page generated in 0.0622 seconds