• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High frequency Pound-Drever-Hall optical ring resonator sensing

Chambers, James Paul 15 May 2009 (has links)
A procedure is introduced for increasing the sensitivity of measurements in integrated ring resonators beyond what has been previously accomplished. This is demonstrated by a high-frequency, phase sensitive lock to the ring resonators. A prototyped fiber Fabry-Perot cavity is used for comparison of the method to a similar cavity. The Pound-Drever-Hall (PDH) method is used as a proven, ultra-sensitive method with the exploration of a much higher frequency modulation than has been previously discussed to overcome comparatively low finesse of the ring resonator cavities. The high frequency facilitates the use of the same modulation signal to separately probe the phase information of different integrated ring resonators with quality factors of 8.2 x10^5 and 2.4 x10^5. The large free spectral range of small cavities and low finesse provides a challenge to sensing and locking the long-term stability of diode lasers due to small dynamic range and signal-to-noise ratios. These can be accommodated for by a calculated increase in modulation frequency using the PDH approach. Further, cavity design parameters will be shown to have a significant affect on the resolution of the phase-sensing approach. A distributed feedback laser is locked to a ring resonator to demonstrate the present sensitivity which can then be discussed in comparison to other fiber and integrated sensors. The relationship of the signal-to-noise ratio (S/N) and frequency range to the cavity error signal will be explored with an algorithm to optimize this relationship. The free spectral range and the cavity transfer function coefficients provide input parameters to this relationship to determine the optimum S/N and frequency range of the respective cavities used for locking and sensing. The purpose is to show how future contributions to the measurements and experiments of micro-cavities, specifically ring resonators, is well-served by the PDH method with high-frequency modulation.
2

CW 266nm all solid state ultraviolet laser resonant cavity Feedback control

Tsai, Cheng-Yu 27 June 2000 (has links)
In this work, we use Coherent produced 532nm cw laser as pump source, and 266nm is obtained by frequency doubling. The ring cavity of a laser is generally subject to various perturbation, and the stability of a single-mode laser can be improved by electronically locking its frequency. We use a Pound-Drever-Hall laser frequency stabilization system to control the cavity length. This method utilizes an external phase modulator to produce the sideband and is capable of detecting weak signal to get the information of cavity disturbation. Finally, the signal is dealt with electrical circuit and then feedback to a PZT to control the stabilization of the cavity length.
3

High frequency Pound-Drever-Hall optical ring resonator sensing

Chambers, James Paul 10 October 2008 (has links)
A procedure is introduced for increasing the sensitivity of measurements in integrated ring resonators beyond what has been previously accomplished. This is demonstrated by a high-frequency, phase sensitive lock to the ring resonators. A prototyped fiber Fabry-Perot cavity is used for comparison of the method to a similar cavity. The Pound-Drever-Hall (PDH) method is used as a proven, ultra-sensitive method with the exploration of a much higher frequency modulation than has been previously discussed to overcome comparatively low finesse of the ring resonator cavities. The high frequency facilitates the use of the same modulation signal to separately probe the phase information of different integrated ring resonators with quality factors of 8.2 x10^5 and 2.4 x10^5. The large free spectral range of small cavities and low finesse provides a challenge to sensing and locking the long-term stability of diode lasers due to small dynamic range and signal-to-noise ratios. These can be accommodated for by a calculated increase in modulation frequency using the PDH approach. Further, cavity design parameters will be shown to have a significant affect on the resolution of the phase-sensing approach. A distributed feedback laser is locked to a ring resonator to demonstrate the present sensitivity which can then be discussed in comparison to other fiber and integrated sensors. The relationship of the signal-to-noise ratio (S/N) and frequency range to the cavity error signal will be explored with an algorithm to optimize this relationship. The free spectral range and the cavity transfer function coefficients provide input parameters to this relationship to determine the optimum S/N and frequency range of the respective cavities used for locking and sensing. The purpose is to show how future contributions to the measurements and experiments of micro-cavities, specifically ring resonators, is well-served by the PDH method with high-frequency modulation.
4

LASER STABILIZATION EXPERIMENTS AND OPTICAL FREQUENCY COMB APPLICATIONS

Michael W Kickbush (13105209) 18 July 2022 (has links)
<p>In this Thesis I report on my work done in replicating the Pound-Drever-Hall (PDH) laser stabilization technique as well as applications of PDH to microring resonators and generated Optical Frequency Combs (OFC). These works have been broken down into three sections. First, I replicated the PDH method with a continuous wave (CW) laser along with a Fabry-Pérot Cavity (FPC). Second, I applied the same technique to a 25 GHz Free Spectral Range (FSR) microring resonator fabricated in Silicon Nitride. Third, I applied the PDH technique to a high Quality Factor (Q) high Free Spectral Range (FSR) microring resonator in preparation to lock the repetition rate of two soliton combs beat together. The last experiment was for an application towards a compact optical clock system; such systems will have a wide impact on the infrastructure of our navigation and communication structures in use today.</p>
5

A Narrow-Linewidth Laser at 1550 nm Using the Pound-Drever-Hall Stabilization Technique

Lally, Evan M. 03 October 2006 (has links)
Linewidth is a measure of the frequency stability of any kind of oscillator, and it is a defining characteristic of coherent lasers. Narrow linewidth laser technology, particularly in the field of fiber-based infrared lasers, has progressed to the point where highly stable sources are commercially available with linewidths on the order of 1-100 kHz. In order to achieve a higher level of stability, the laser must be augmented by an external frequency stabilization system. This paper presents the design and operation of a frequency locking system for infrared fiber lasers. Using the Pound-Drever-Hall technique, the system significantly reduces the linewidth of an input laser with an un-stabilized linewidth of 2 kHz. It uses a high-finesse Fabry-Perot cavity, which is mechanically and thermally isolated, as a frequency reference to measure the time-varying frequency of the input laser. An electronic feedback loop works to correct the frequency error and maintain constant optical power. Testing has proven the Pound-Drever-Hall system to be highly stable and capable of operating continuously for several seconds at a time. / Master of Science
6

Sources laser non linéaires accordables dans l'infrarouge et l'ultraviolet pour la métrologie des rayonnements optiques / infrared and ultraviolet synchronization of non-linear laser sources aimed at optical radiation metrology

Rihan, Abdallah 19 December 2011 (has links)
L'objet de cette thèse porte sur la conception et la réalisation de deux sources laser non linéaires accordables dans les domaines IR et UV, pour le raccordement de la sensibilité spectrale des détecteurs au moyen du radiomètre cryogénique du laboratoire commun de métrologie (LCM). La source IR est un oscillateur paramétrique optique (OPO) résonant sur les ondes pompe et signal (PRSRO), utilisant un cristal de niobate de lithium à inversion de domaines de polarisation dopé par 5% d'oxyde de magnésium (ppMgCLN). Pompé par un laser Ti:Al2O3 en anneau mono-fréquence et accordable, délivrant 500 mW de puissance utile autour de 795 nm, l'OPO possède un seuil d'oscillation de 110 mW. Une couverture spectrale continue entre 1 µm et 3.5 µm a été obtenue, avec des puissances de l'ordre du mW pour l'onde signal (1 µm à 1.5 µm) et des puissances comprises entre $20$ à $50$ mW pour l'onde complémentaire couvrant un octave de longueur d'onde IR entre 1.7 µm et 3.5 µm. La source UV est obtenue par doublage de fréquence en cavité externe du laser Ti:Al2O3, dans un cristal de triborate de lithium (LiB3O5). Un accord de phase en température à angle d'accord de phase fixé permet l'obtention d'une couverture spectrale comprise entre 390 nm et 405 nm. L'asservissement de la cavité de doublage sur la fréquence du laser Ti:Al2O3 par la méthode de Pound-Drever-Hall, ainsi qu'une adaptation de mode optimale, permet d'obtenir une puissance de 5.64 mW à 400 nm à partir de 480 mW de puissance fondamentale. / The work presented in this PhD dissertation details the strategy adopted to build two non-linear laser sources that are widely in the mid-infrared and blue-UV spectral ranges. These laser sources are needed for the traceability to SI units of coherent light irradiance measurements using a cryogenic radiometer of the using cryogenic radiometer of the Laboratoire commun de métrologie (LCM) .The infrared laser source is an optical parametric oscillator (OPO) resonating on the pump and signal wavelengths (PRSRO) and employing a periodically poled Lithium Niobate non-linear crystal doped with 5% magnesium oxide (ppMgCLN). The PRSRO is pumped by a single-frequency tunable bow-tie ring cavity Titanium-Sapphire laser (Ti:Al2O3) delivering 500 mW output power at 795 nm wavelength, , resulting in a power oscillation threshold of 110 mW. The PRSRO emission could continuously cover the spectral range from 1 µm to 3.5 µm. The level of output power achieved is of the order of 1 mW for the signal wave (1 µm to 1.5 µm) and between 20 mW and 50 mW for idler wave spanning an octave wavelength range (1.7 µm to 3.5 µm).The UV source based on the second harmonic generation on the Titanium-Sapphire tunable laser using an external enhancement cavity containing a critically phase-matched LBO non linear crystal (LiB3O5). Temperature-tuning of the phase-matching condition at a fixed crystal orientation leads to a wide tunability from 390 nm to 405 nm wavelength. The external cavity optical pathlength was actively locked to the laser frequency using a¨Pound-Drever-Hall servo, allowing to extract up to 6 mW power at 400 nm wavelength with a 480 mW pump power. Despite a perfect mode-matching efficiency, the power performance was limited by the poor nonlinear impedance matching of the resonator, due to both the weak nonlinearity of the crystal and the low incoming laser power.
7

Contrôle longitudinal et caractérisation optique du détecteur Virgo

Kreckelbergh, Stephane 10 October 2005 (has links) (PDF)
Le détecteur Virgo est constitué d'un interféromètre de Michelson avec des cavités Fabry-Perot de 3 km de long dans les bras et utilise la technique de recyclage de puissance. Il a pour but la détection directe des ondes gravitationnelles émises par des sources astrophysiques. <br />Pour atteindre sa sensibilité, Virgo doit être emmené à son point de fonctionnement par des asservissements tant longitudinaux qu'angulaires. Pour cela, nous avons mis en place un algorithme de contrôle longitudinal ("lock") qui partant d'un interféromètre libre l'emmène à son point de fonctionnement. Pour arriver à ce résultat, nous utilisons la technique de Pound-Drever qui nous permet d'avoir un signal sensible à la variation de la position d'une cavité optique par rapport à la résonance. <br />Nous avons developpé deux algorithmes. Le premier s'inspire de celui utilisé par la collaboration LIGO. Nous arrivons au point de fonctionnement en contrôlant successivement les quatres longueurs caractéristiques de Virgo. L'application de cet algorithme sur l'instrument s'est soldé par un échec dont les causes sont liées aux différences entre Virgo et LIGO. Le deuxième algorithme nous permet de contrôler simultanément ces quatres longueurs en étant sur la mi frange de l'interféromètre de Michelson. Nous emmenons ensuite l'interféromètre en quelques minutes à son point de fonctionnement de manière déterministe. <br />Une autre partie de la thèse consiste en la mesure in situ des paramètres optiques nécessaires à la compréhension de l'instrument. Ceci nous a permis à la fois de faire accorder la simulation avec les données et de préparer l'algorithme d'acquisition du lock de Virgo. <br />Enfin, nous nous intéressons à l'impact de la technique d'Anderson utilisée pour le contrôle angulaire des miroirs sur le contrôle longitudinal des cavités optiques. Nous en montrons le mécanisme et évaluons son impact sur le lock de Virgo.
8

Mesure précise de la polarisation du faisceau d'électrons à TJNAF par polarimétrie Compton pour les expériences G^p _E et N-\Delta

Escoffier, Stéphanie 19 October 2001 (has links) (PDF)
Ce travail présente les mesures de la polarisation par effet Compton du faisceau d'électrons de l'accélérateur TJNAF pour les expériences de mesure des facteurs de forme électromagnétiques du proton et de mesure des fonctions de réponse du nucléon dans la réaction de l'électroproduction de pion au voisinage de la résonance 6.(1232). Le polarimètre Compton, dont le principe repose sur la diffusion élastique électron-photon, a été conçu et réalisé autour d'une cavité Fabry-Perot de finesse élevée, de l'ordre de 25000. La puissance du laser incident, de type Nd:YAG à la longueur d'onde 1064 nm, est accumulée dans la cavité optique afin d'obtenir une luminosité d'interaction telle que la précision statistique sur la mesure de la polarisation des électrons atteigne 1% en une heure. La fréquence du laser est asservie par la méthode Pound-Drever à une fréquence de résonance de l'interféromètre. La polarisation circulaire du faisceau de photons dans la cavité a été mesurée égale à 99.6+/-0.45%. Cette grandeur, ainsi que la mesure de l'asymétrie expérimentale et du pouvoir d'analyse de notre instrument, intervient directement dans la mesure de la polarisation du faisceau d'électrons. Le pouvoir d'analyse a été déterminé par une caractérisation de la réponse du détecteur de photons, un calorimètre composé de 25 cristaux de PbW04, à l'aide des événements détectés en coïncidence avec le détecteur d'électrons, composé de 4 plans de 48 'pistes de silicium. Les incertitudes de mesure proviennent principalement de la modélisation de la fonction de réponse du détecteur, de l'effet d'empilement de la mesure de la polarisation des photons. L'incertitude relative totale sur la mesure de Pe est de 1.4% pour une prise de données de 40 minutes. Le polarimètre Compton permet aussi de mesurer les différences d'hélicité entre deux renversements de la polarisation des électrons. Celle ci a été trouvée compatible avec zéro à 0.3% près.
9

Developpement d'une horloge à atomes de strontium piégés : Réalisation d'un laser ultra-stable et stabilité de fréquence

Quessada-Vial, Audrey 30 May 2005 (has links) (PDF)
Ce mémoire présente le développement d'une nouvelle génération d'étalons de fréquence optique utilisant des atomes piégés. La stabilité de fréquence d'une telle horloge sera limitée dans un premier temps par le bruit de l'oscillateur local. Nous discutons dans la première partie du mémoire de différents paramètres, comme le rapport cyclique ou la méthode d'interrogation, pouvant réduire les effets de ce bruit: la séquence temporelle du cycle d'horloge doit être optimisée. Avec l'oscillateur local que nous avons réalisé, un laser ultra-stable, la stabilité attendue est de quelques 10^-16 tau^-1/2 soit près de deux ordres de grandeurs mieux que les fontaines atomiques actuelles. La deuxième partie du mémoire décrit une source d'atomes froids de strontium performante, étape essentielle pour réduire le temps de préparation des atomes dans le cycle. Enfin, nous rapportons la mesure de la transition d'horloge 1S0-3P0 du ^87 Sr avec une résolution de 15 kHz.
10

Sources laser non linéaires accordables dans l'infrarouge et l'ultraviolet pour la métrologie des rayonnements optiques

Rihan, Abdallah 19 December 2011 (has links) (PDF)
L'objet de cette thèse porte sur la conception et la réalisation de deux sources laser non linéaires accordables dans les domaines IR et UV, pour le raccordement de la sensibilité spectrale des détecteurs au moyen du radiomètre cryogénique du laboratoire commun de métrologie (LCM). La source IR est un oscillateur paramétrique optique (OPO) résonant sur les ondes pompe et signal (PRSRO), utilisant un cristal de niobate de lithium à inversion de domaines de polarisation dopé par 5% d'oxyde de magnésium (ppMgCLN). Pompé par un laser Ti:Al2O3 en anneau mono-fréquence et accordable, délivrant 500 mW de puissance utile autour de 795 nm, l'OPO possède un seuil d'oscillation de 110 mW. Une couverture spectrale continue entre 1 µm et 3.5 µm a été obtenue, avec des puissances de l'ordre du mW pour l'onde signal (1 µm à 1.5 µm) et des puissances comprises entre $20$ à $50$ mW pour l'onde complémentaire couvrant un octave de longueur d'onde IR entre 1.7 µm et 3.5 µm. La source UV est obtenue par doublage de fréquence en cavité externe du laser Ti:Al2O3, dans un cristal de triborate de lithium (LiB3O5). Un accord de phase en température à angle d'accord de phase fixé permet l'obtention d'une couverture spectrale comprise entre 390 nm et 405 nm. L'asservissement de la cavité de doublage sur la fréquence du laser Ti:Al2O3 par la méthode de Pound-Drever-Hall, ainsi qu'une adaptation de mode optimale, permet d'obtenir une puissance de 5.64 mW à 400 nm à partir de 480 mW de puissance fondamentale.

Page generated in 0.0356 seconds