Spelling suggestions: "subject:"centerface cérebro computador"" "subject:"centerface cérebro computadora""
1 |
Brain-machine interface using nonlinear Kalman filters and channel selection / Interface cérebro-máquina usando filtros de Kalman e seleção de canaisDANTAS, Henrique Cunha 26 June 2015 (has links)
Submitted by Isaac Francisco de Souza Dias (isaac.souzadias@ufpe.br) on 2015-10-22T16:37:20Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Dissertação_Henrique_Dantas_2015.pdf: 1887462 bytes, checksum: 0e4a34db6ecb36db533670b19464128c (MD5) / Made available in DSpace on 2015-10-22T16:37:20Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Dissertação_Henrique_Dantas_2015.pdf: 1887462 bytes, checksum: 0e4a34db6ecb36db533670b19464128c (MD5)
Previous issue date: 2015-06-26 / CAPES / This dissertation describes the use of Kalman Filter to decode neural signals, which were recorded using cortical surface potentials, acquired with dense grids of microelectrodes, for brain-computer interfaces (BCIs). This work represents a combination of electronic and biomedical engineering, machine learning and neural science. Kalman filters have been used to decode neural signals and estimate hand kinematics in many studies. However, most prior work assumes a linear system model, an assumption that is violated by neural systems. In this dissertation, I added nonlinearities to the decoding algorithm improving the accuracy of tracking hand movements using neural signal acquired via a 32-channel micro-electrocorticographic (µECoG) grid placed over the arm and hand representations in the motor cortex. Experimental comparisons indicate that a Kalman filter with a fifth order polynomial generative model with cross product relating the hand kinematics signals to the neural signals improved the mean-square tracking performance in the hand movements over a conventional Kalman filter employing a linear system model. While in other works the channel delays were estimated using algorithm based on hill climbing or assuming the uniformity of delay across all the channels. In this work, Particle Swarm of Optimization was applied to better estimate the delays. Also, I was also able to develop a generalized feature selection algorithm and apply to it, to select the most significant channels. As expected this caused a loss in accuracy, but the results of a 16 neural channels system were comparable with the full 32 channel system. This dissertation represents a comprehensive investigation of addition of non linearities, delay estimation and feature selection for Kalman Filter, when used as interface between man and machine. / Essa dissertação descreve o uso dos Filtros de Kalman para decodificar sinais neurais, que são gravados na superfície do córtex cerebral por uma malha densa de micro eletrodos, para interfaces cérebro computador. Esse trabalho representa a combinação entre os campos das engenharia eletrônica e biomédica, aprendizagem de máquina e neuro ciência. Filtros de Kalman tem sido usados para decodificar sinais neurais e estimar os estados cinemáticos da mão em diversos estudos. No entanto, na maioria dos trabalhos anteriores é assumido linearidade, tal premissa é quase certa de ser falsa em sistemas neurais. Nessa dissertação, foi adicionado não linearidades ao algoritmo de decodificação, que resultou em uma melhora na acurácia da predição dos movimentos da mão para sinais adquiridos por uma malha de 32 micro canais eletrocortigráfico (µECoG), colocados sobre as áreas que representam mão e braços no córtex motor. Comparações experimentais indicam que os Filtros de Kalman com quinta ordem polinomial no modelo generativo com o produto cruzado para relacionar o estado cinemático da mão com os sinais neurais melhoram o erro quadrático se comparado com os Filtros de Kalman tradicionais. Enquanto em outros trabalhos os retardos dos canais são estimados com algoritmos de subida de encosta ou assumindo uniformidade entre os atrasos. Nesse trabalho, foi usado otimização po exame (PSO) para estimar os melhores retardos para cada canal. Nesse trabalho, também foi desenvolvido uma generalização da informação mutua para selecionar os melhores canais. Como o esperado a redução para 16 canais neurais, levou a uma perda de desempenho, porém os resultados são comparáveis. Essa dissertação representa uma compreensiva investigação sobre a adição de não linearidades, estimação de atrasos e seleção de características para Filtros de Kalman, quando usados como interface entre homem e máquina.
|
2 |
A Novel Approach Of Independent Brain-computer Interface Based On SSVEPTELLO, R. J. M. G. 01 September 2016 (has links)
Made available in DSpace on 2018-08-02T00:01:45Z (GMT). No. of bitstreams: 1
tese_10281_TeseDoutoradoRichardTello2016.pdf: 12331551 bytes, checksum: 0dae4547527893319ca299b5e22f6234 (MD5)
Previous issue date: 2016-09-01 / Durante os últimos dez anos, as Interfaces Cérebro Computador (ICC)
baseadas em Potenciais Evocados Visuais de Regime Permanente (SSVEP) têm
chamado a atenção de muitos pesquisadores devido aos resultados promissores e as altas taxas de precisão atingidas. Este tipo de ICC permite que pessoas com dificuldades motoras severas possam se comunicar com o mundo exterior através da modulação da atenção visual a luzes piscantes com frequência determinada. Esta Tese de Doutorado tem o intuito de desenvolver um novo enfoque dentro das chamadas ICC Independentes, nas quais os usuários não necessitam executar tarefas neuromusculares para seleção visual de objetivos específicos, característica que a distingue das tradicionais ICCs-SSVEP. Assim, pessoas com difculdades motoras severas, como pessoas com Esclerose Lateral Amiotrófca (ELA), contam com uma nova alternativa de se comunicar através de sinais cerebrais. Diversas contribuições foram realizadas neste trabalho, como, por exemplo, melhoria do algoritmo extrator de características, denominado Índice de Sincronização Multivariável (ou MSI,
do Inglês), para a detecção de potenciais evocados; desenvolvimento de um novo método de detecção de potenciais evocados através da correlação entre modelos multidimensionais (tensores); o desenvolvimento do primeiro estudo sobre a influência de estímulos coloridos na detecção de SSVEPs usando LEDs; a aplicação do conceito de Compressão na detecção de SSVEPs; e, fnalmente, o desenvolvimento de uma nova ICC independente que utiliza o enfoque de Percepção Fundo-Figura (ou FGP, do Inglês).
|
3 |
Uma Proposta de Interface Cérebro-Computador para Comando de Cadeiras de RodasFERREIRA, A. 23 December 2008 (has links)
Made available in DSpace on 2018-08-02T00:01:56Z (GMT). No. of bitstreams: 1
tese_2854_TeseDoutoradoAndreFerreira.pdf: 12080408 bytes, checksum: b20786cbb7f6540c1812990a2e771fa1 (MD5)
Previous issue date: 2008-12-23 / Esta Tese de Doutorado trata da implementação de uma Interface Cérebro-Computador (ICC), baseada em estímulos visuais (ERD/ERS), para comando de uma cadeira de rodas robótica e para estabelecer uma interface de comunicação. A ICC implementada é destinada a pessoas com deficiência que possuem a habilidade de abrir e fechar os olhos, o que é necessário para gerar os padrões cerebrais em questão. Experimentos realizados com tais usuários, inclusive alguns com doenças neuromusculares severas, revelaram resultados muito promissores. Para os usuários que não dispõem de tal capacidade, algumas modificações na ICC são também propostas nesta Tese. A principal alteração consiste na mudança do paradigma da ICC, que é alterado de estímulos visuais para imaginação motora de membros. Assim, cabe ao usuário imaginar o movimento de mãos, por exemplo, para enviar comandos para a cadeira de rodas ou para a interface de comunicação. São apresentados experimentos usando tanto o paradigma de estímulos visuais quanto o de imaginação motora, com 4 voluntários sem problemas neuromusculares e 4 pessoas com deficiência grave. Os resultados obtidos são discutidos em detalhes, e mostram a viabilidade da ICC proposta.
|
4 |
A Brain-computer Interface Architecture Based On Motor Mental Tasks And Music ImageryBENEVIDES, A. B. 30 August 2013 (has links)
Made available in DSpace on 2018-08-02T00:01:59Z (GMT). No. of bitstreams: 1
tese_3870_Tese_Alessandro_Botti_Benevides_600dpi.pdf: 13357880 bytes, checksum: d7eb3ecdca23180cb3af92d0ea795d0e (MD5)
Previous issue date: 2013-08-30 / This present research proposes a Brain-Computer Interface (BCI) architecture
adapted to motor mental tasks and music imagery. For that purpose the statistical
properties of the electroencephalographic signal (EEG) were studied, such as its
probability distribution function, stationarity, correlation and signal-to-noise ratio
(SNR), in order to obtain a minimal empirical and well-founded parameter system for
online classification. Stationarity tests were used to estimate the length of the time
windows and a minimum length of 1.28 s was obtained. Four algorithms for artifact
reduction were tested: threshold analysis, EEG filtering and two Independent
Component Analysis (ICA) algorithms. This analysis concluded that the algorithm
fastICA is suitable for online artifact removal. The feature extraction used the Power
Spectral Density (PSD) and three methods were tested for automatic selection of
features in order to have a training step independent of the mental task paradigm, with
the best performance obtained with the Kullback-Leibler symmetric divergence method.
For the classification, the Linear Discriminant Analysis (LDA) was used and a step of
reclassification is suggested. A study of four motor mental tasks and a non-motor
related mental task is performed by comparing their periodograms, Event-Related
desynchronization/synchronization (ERD/ERS) and SNR. The mental tasks are the
imagination of either movement of right and left hands, both feet, rotation of a cube and
sound imagery. The EEG SNR was estimated by a comparison with the correlation
between the ongoing average and the final ERD/ERS curve, in which we concluded that
the mental task of sound imagery would need approximately five times more epochs
than the motor-related mental tasks. The ERD/ERS could be measured even for
frequencies near 100 Hz, but in absolute amplitudes, the energy variation at 100 Hz was
one thousand times smaller than for 10 Hz, which implies that there is a small
probability of online detection for BCI applications in high frequency. Thus, most of the
usable information for online processing and BCIs corresponds to the α/µ band (low
frequency). Finally, the ERD/ERS scalp maps show that the main difference between
the sound imagery task and the motor-related mentaltasks is the absence of ERD at the
µ band, in the central electrodes, and the presence of ERD at the αband in the temporal
and lateral-frontal electrodes, which correspond tothe auditory cortex, the Wernickes
area and the Brocas area.
|
5 |
Interface cérebro-computador para classificação de banco de imagens de acervos museológicos/Bechelli, R. P. January 2018 (has links) (PDF)
Tese (Doutorado em Engenharia Elétrica) - Centro Universitário FEI, São Bernardo do Campo, 2018
|
6 |
Extração de características para a classificação de imagética motora em interfaces cérebro-computador / Feature extraction for motor imagery classification in brain-computer interfacesVaz, Yule 16 June 2016 (has links)
As Interfaces Cérebro-Computador (do inglês Brain-Computer Interfaces BCI) são sistemas que visam permitir a interação entre usuários e máquinas por meio do monitoramento das atividades cerebrais. Sistemas de BCI são considerados como uma alternativa para que pessoas com perda severa ou total do controle motor, tais como as que sofrem de Esclerose Lateral Amiotrófica, possam contar com algum controle sobre o ambiente externo. Para mapear intenções individuais em operações de máquina, os sistemas de BCI empregam um conjunto de etapas que envolvem a captura e pré-processamento dos sinais cerebrais, a extração e seleção de suas características mais relevantes e a classificação das intenções. O projeto e a implementação de sistemas de BCI viáveis ainda são questões em aberto devido aos grandes desafios encontrados em cada uma de suas etapas. Esta lacuna motivou este trabalho de mestrado o qual apresenta uma avaliação dos principais extratores de características utilizados para classificar ensaios de imagética motora, cujos dados foram obtidos por meio de eletroencefalografia (EEG) e apresentam influências de artefatos, mais precisamente daqueles produzidos por interferências provenientes de atividades oculares (monitoradas por eletrooculografia EOG). Foram considerados sinais coletados pela BCI Competition IV-2b, os quais contêm informações sobre três canais de EEG e três outros de EOG. Como primeira etapa, foi realizado o pré-processamento desses canais utilizando a técnica de Análise de Componentes Independentes (ICA) em conjunto com um limiar de correlação para a remoção de componentes associados a artefatos oculares. Posteriormente, foram avaliadas diferentes abordagens para a extração de características, a mencionar: i) Árvore Diádica de Bandas de Frequências (ADBF); ii) Padrões Espaciais Comuns (CSP); iii) Padrões Espectro-Espaciais Comuns (CSSP); iv) Padrões Esparsos Espectro-Espaciais Comuns (CSSSP); v) CSP com banco de filtros (FBCSP); vi) CSSP com banco de filtros (FBCSSP); e, finalmente, vii) CSSSP com banco de filtros (FBCSSSP). Contudo, como essas técnicas podem produzir espaços de exemplos com alta dimensionalidade, considerou-se, também, a técnica de Seleção de Características baseada em Informação Mútua (MIFS) para escolher os atributos mais relevantes para o conjunto de dados adotado na etapa de classificação. Finalmente, as Máquinas de Vetores de Suporte (SVM) foram utilizadas para a classificação das intenções de usuários. Experimentos permitem concluir que os resultados do CSSSP e FBCSSSP são equiparáveis àqueles produzidos pelo estado da arte, considerando o teste de significância estatística de Wilcoxon bilateral com confiança de 0, 95. Apesar disso o CSSSP tem sido negligenciado pela área devido ao fato de sua parametrização ser considerada complexa, algo que foi automatizado neste trabalho. Essa automatização reduziu custos computacionais envolvidos na adaptação das abordagens para indivíduos específicos. Ademais, conclui-se que os extratores de características FBCSP, CSSP, CSSSP, FBCSSP e FBCSSSP não necessitam da etapa de remoção de artefatos oculares, pois efetuam filtragens por meio de modelos autoregressivos. / Brain-Computer Interfaces (BCI) employ brain imaging to enable human-machine interaction without physical control. BCIs are an alternative so that people suffering from severe or complete loss of motor control, like those with Amyotrophic Lateral Sclerosis (ALS), may have some interaction with the external environment. To transform individual intentions onto machine operations, BCIs rely on a series of steps that include brain signal acquisition and preprocessing, feature extraction, selection and classification. A viable BCI implementation is still an open question due to the great challenges involved in each one of these steps. This gap motivated this work, which presents an evaluation of themain feature extractors used to classify Motor Imagery trials, whose data were obtained through Electroencephalography (EEG) influenced by ocular activity, monitored by Electrooculography (EOG). In this sense, signals acquired by BCI Competition IV-2b, were considered. As first step the preprocessing was performed through Independent Component Analysis (ICA) together with a correlation threshold to identify components associated with ocular artifacts. Afterwards, different feature extraction approaches were evaluated: i) Frequency Subband Dyadic Three; ii) Common Spatial Patterns (CSP); iii) Common Spectral-Spatial Patterns (CSSP); iv) Common Sparse Spectral-Spatial Patterns (CSSSP); v) Filter Bank Common Spatial Patterns (FBCSP); vi) Filter Bank Common Sectral-Spatial Patterns (FBCSSP); and, finally, vii) Filter Bank Sparse Spectral- Spatial Patterns (FBCSSSP). These techniques tend to produce high-dimensional spaces, so a Mutual Information-based Feature Selection was considered to select signal attributes. Finally, Support Vector Machines were trained to tackle the Motor Imagery classification. Experimental results allow to conclude that CSSSP and FBCSSSP are statistically equivalent the state of the art, when two-sided Wilcoxon test with 0, 95 confidence is considered. Nevertheless, CSSSP has been neglected by this area due to its complex parametrization, which is addressed in this work using an automatic approach. This automation reduced computational costs involved in adapting the BCI system to specific individuals. In addition, the FBCSP, CSSP, CSSSP, FBCSSP and FBCSSSP confirm to be robust to artifacts as they implicitly filter the signals through autoregressive models.
|
7 |
Conjuntos K de redes neurais e sua aplicação na classificação de imagética motora / K-sets of neural networks and its application on motor imagery classificationPiazentin, Denis Renato de Moraes 13 October 2014 (has links)
Esta dissertação de mestrado tem por objetivo analisar os conjuntos-K, uma hierarquia de redes neurais biologicamente mais plausíveis, e aplicá-los ao problema de classificação de imagética motora através do eletroencefalograma (EEG). A imagética motora consiste no ato de processar um movimento motor da memória humana de longo tempo para a memória de curto prazo. A imagética motora deixa um rastro no sinal do EEG que torna possível a identificação e classificação dos diferentes movimentos motores. A tarefa de classificação de imagética motora através do EEG é reconhecida como complexa devido à não linearidade e quantidade de ruído da série temporal do EEG e da pequena quantidade de dados disponíveis para aprendizagem. Os conjuntos-K são um modelo conexionista que simula o comportamento dinâmico e caótico de populações de neurônios do cérebro e foram modelados com base em observações do sistema olfatório feitas por Walter Freeman. Os conjuntos-K já foram aplicados em diversos domínios de classificação diferentes, incluindo EEG, tendo demonstrado bons resultados. Devido às características da classificação de imagética motora, levantou-se a hipótese de que a aplicação dos conjuntos-K na tarefa pudesse prover bons resultados. Um simulador para os conjuntos-K foi construído para a realização dos experimentos. Não foi possível validar a hipótese levantada no trabalho, dado que os resultados dos experimentos realizados com conjuntos-K e imagética motora não apresentaram melhorias significativas para a tarefa nas comparações realizadas. / This dissertation aims to examine the K-sets, a hierarchy of biologically plausible neural networks, and apply them to the problem of motor imagery classification through electroencephalogram (EEG). Motor imagery is the act of processing a motor movement from long-term to short-term memory. Motor imagery leaves a trail in the EEG signal, which makes possible the identification and classification of different motor movements. Motor imagery classification is a complex problem due to non-linearity of the EEG time series, low signal-to-noise ratio, and the small amount of data typically available for learning. K-sets are a connectionist model that simulates the dynamic and chaotic behavior of populations of neurons in the brain, modeled based on observations of the olfactory system by Walter Freeman. K-sets have already been used in several different classification domains, including EEG, showing good results. Due to the characteristics of motor imagery classification, a hypothesis that the application of K-sets in the task could provide good results was raised. A simulator for K-sets was created for the experiments. Unfortunately, the hypothesis could not be validated, as the results of the conducted experiments with K-sets and motor imagery showed no significant improvements in comparison in the task performed.
|
8 |
Extração de características para a classificação de imagética motora em interfaces cérebro-computador / Feature extraction for motor imagery classification in brain-computer interfacesYule Vaz 16 June 2016 (has links)
As Interfaces Cérebro-Computador (do inglês Brain-Computer Interfaces BCI) são sistemas que visam permitir a interação entre usuários e máquinas por meio do monitoramento das atividades cerebrais. Sistemas de BCI são considerados como uma alternativa para que pessoas com perda severa ou total do controle motor, tais como as que sofrem de Esclerose Lateral Amiotrófica, possam contar com algum controle sobre o ambiente externo. Para mapear intenções individuais em operações de máquina, os sistemas de BCI empregam um conjunto de etapas que envolvem a captura e pré-processamento dos sinais cerebrais, a extração e seleção de suas características mais relevantes e a classificação das intenções. O projeto e a implementação de sistemas de BCI viáveis ainda são questões em aberto devido aos grandes desafios encontrados em cada uma de suas etapas. Esta lacuna motivou este trabalho de mestrado o qual apresenta uma avaliação dos principais extratores de características utilizados para classificar ensaios de imagética motora, cujos dados foram obtidos por meio de eletroencefalografia (EEG) e apresentam influências de artefatos, mais precisamente daqueles produzidos por interferências provenientes de atividades oculares (monitoradas por eletrooculografia EOG). Foram considerados sinais coletados pela BCI Competition IV-2b, os quais contêm informações sobre três canais de EEG e três outros de EOG. Como primeira etapa, foi realizado o pré-processamento desses canais utilizando a técnica de Análise de Componentes Independentes (ICA) em conjunto com um limiar de correlação para a remoção de componentes associados a artefatos oculares. Posteriormente, foram avaliadas diferentes abordagens para a extração de características, a mencionar: i) Árvore Diádica de Bandas de Frequências (ADBF); ii) Padrões Espaciais Comuns (CSP); iii) Padrões Espectro-Espaciais Comuns (CSSP); iv) Padrões Esparsos Espectro-Espaciais Comuns (CSSSP); v) CSP com banco de filtros (FBCSP); vi) CSSP com banco de filtros (FBCSSP); e, finalmente, vii) CSSSP com banco de filtros (FBCSSSP). Contudo, como essas técnicas podem produzir espaços de exemplos com alta dimensionalidade, considerou-se, também, a técnica de Seleção de Características baseada em Informação Mútua (MIFS) para escolher os atributos mais relevantes para o conjunto de dados adotado na etapa de classificação. Finalmente, as Máquinas de Vetores de Suporte (SVM) foram utilizadas para a classificação das intenções de usuários. Experimentos permitem concluir que os resultados do CSSSP e FBCSSSP são equiparáveis àqueles produzidos pelo estado da arte, considerando o teste de significância estatística de Wilcoxon bilateral com confiança de 0, 95. Apesar disso o CSSSP tem sido negligenciado pela área devido ao fato de sua parametrização ser considerada complexa, algo que foi automatizado neste trabalho. Essa automatização reduziu custos computacionais envolvidos na adaptação das abordagens para indivíduos específicos. Ademais, conclui-se que os extratores de características FBCSP, CSSP, CSSSP, FBCSSP e FBCSSSP não necessitam da etapa de remoção de artefatos oculares, pois efetuam filtragens por meio de modelos autoregressivos. / Brain-Computer Interfaces (BCI) employ brain imaging to enable human-machine interaction without physical control. BCIs are an alternative so that people suffering from severe or complete loss of motor control, like those with Amyotrophic Lateral Sclerosis (ALS), may have some interaction with the external environment. To transform individual intentions onto machine operations, BCIs rely on a series of steps that include brain signal acquisition and preprocessing, feature extraction, selection and classification. A viable BCI implementation is still an open question due to the great challenges involved in each one of these steps. This gap motivated this work, which presents an evaluation of themain feature extractors used to classify Motor Imagery trials, whose data were obtained through Electroencephalography (EEG) influenced by ocular activity, monitored by Electrooculography (EOG). In this sense, signals acquired by BCI Competition IV-2b, were considered. As first step the preprocessing was performed through Independent Component Analysis (ICA) together with a correlation threshold to identify components associated with ocular artifacts. Afterwards, different feature extraction approaches were evaluated: i) Frequency Subband Dyadic Three; ii) Common Spatial Patterns (CSP); iii) Common Spectral-Spatial Patterns (CSSP); iv) Common Sparse Spectral-Spatial Patterns (CSSSP); v) Filter Bank Common Spatial Patterns (FBCSP); vi) Filter Bank Common Sectral-Spatial Patterns (FBCSSP); and, finally, vii) Filter Bank Sparse Spectral- Spatial Patterns (FBCSSSP). These techniques tend to produce high-dimensional spaces, so a Mutual Information-based Feature Selection was considered to select signal attributes. Finally, Support Vector Machines were trained to tackle the Motor Imagery classification. Experimental results allow to conclude that CSSSP and FBCSSSP are statistically equivalent the state of the art, when two-sided Wilcoxon test with 0, 95 confidence is considered. Nevertheless, CSSSP has been neglected by this area due to its complex parametrization, which is addressed in this work using an automatic approach. This automation reduced computational costs involved in adapting the BCI system to specific individuals. In addition, the FBCSP, CSSP, CSSSP, FBCSSP and FBCSSSP confirm to be robust to artifacts as they implicitly filter the signals through autoregressive models.
|
9 |
Conjuntos K de redes neurais e sua aplicação na classificação de imagética motora / K-sets of neural networks and its application on motor imagery classificationDenis Renato de Moraes Piazentin 13 October 2014 (has links)
Esta dissertação de mestrado tem por objetivo analisar os conjuntos-K, uma hierarquia de redes neurais biologicamente mais plausíveis, e aplicá-los ao problema de classificação de imagética motora através do eletroencefalograma (EEG). A imagética motora consiste no ato de processar um movimento motor da memória humana de longo tempo para a memória de curto prazo. A imagética motora deixa um rastro no sinal do EEG que torna possível a identificação e classificação dos diferentes movimentos motores. A tarefa de classificação de imagética motora através do EEG é reconhecida como complexa devido à não linearidade e quantidade de ruído da série temporal do EEG e da pequena quantidade de dados disponíveis para aprendizagem. Os conjuntos-K são um modelo conexionista que simula o comportamento dinâmico e caótico de populações de neurônios do cérebro e foram modelados com base em observações do sistema olfatório feitas por Walter Freeman. Os conjuntos-K já foram aplicados em diversos domínios de classificação diferentes, incluindo EEG, tendo demonstrado bons resultados. Devido às características da classificação de imagética motora, levantou-se a hipótese de que a aplicação dos conjuntos-K na tarefa pudesse prover bons resultados. Um simulador para os conjuntos-K foi construído para a realização dos experimentos. Não foi possível validar a hipótese levantada no trabalho, dado que os resultados dos experimentos realizados com conjuntos-K e imagética motora não apresentaram melhorias significativas para a tarefa nas comparações realizadas. / This dissertation aims to examine the K-sets, a hierarchy of biologically plausible neural networks, and apply them to the problem of motor imagery classification through electroencephalogram (EEG). Motor imagery is the act of processing a motor movement from long-term to short-term memory. Motor imagery leaves a trail in the EEG signal, which makes possible the identification and classification of different motor movements. Motor imagery classification is a complex problem due to non-linearity of the EEG time series, low signal-to-noise ratio, and the small amount of data typically available for learning. K-sets are a connectionist model that simulates the dynamic and chaotic behavior of populations of neurons in the brain, modeled based on observations of the olfactory system by Walter Freeman. K-sets have already been used in several different classification domains, including EEG, showing good results. Due to the characteristics of motor imagery classification, a hypothesis that the application of K-sets in the task could provide good results was raised. A simulator for K-sets was created for the experiments. Unfortunately, the hypothesis could not be validated, as the results of the conducted experiments with K-sets and motor imagery showed no significant improvements in comparison in the task performed.
|
10 |
SSVEP-EEG signal pattern recognition system for real-time brain-computer interfaces applications /Giovanini, Renato de Macedo. January 2017 (has links)
Orientador: Aparecido Augusto de Carvalho / Resumo: There are, nowadays, about 110 million people in the world who live with some type of severe motor disability. Specifically in Brazil, about 2.2% of the population are estimated to live with a condition of difficult locomotion. Aiming to help these people, a vast variety of devices, techniques and services are currently being developed. Among those, one of the most complex and challenging techniques is the study and development of Brain-Computer Interfaces (BCIs). BCIs are systems that allow the user to communicate with the external world controlling devices without the use of muscles or peripheral nerves, using only his decoded brain activity. To achieve this, there is a need to develop robust pattern recognition systems, that must be able to detect the user’s intention through electroencephalography (EEG) signals and activate the corresponding output with reliable accuracy and within the shortest possible processing time. In this work, different EEG signal processing techniques were studied, and it is presented the development of a EEG under visual stimulation (Steady-State Visual Evoked Potentials - SSVEP) pattern recognition system. Using only Open Source tools and Python programming language, modules to manage datasets, reduce noise, extract features and perform classification of EEG signals were developed, and a comparative study of different techniques was performed, using filter banks and Discrete Wavelet Transforms (DWT) as feature extraction approach... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
|
Page generated in 0.0615 seconds