• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 1
  • Tagged with
  • 18
  • 18
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interfaces haptiques pour l'interaction physique humain-robot : analyse et mise en œuvre de l'approche macro-mini

Beaudoin, Jonathan, Beaudoin, Jonathan 22 May 2022 (has links)
Cette thèse présente la conception d'une interface haptique capable de rendre l'interaction physique humain-robot naturelle et intuitive. Il s'agit là d'un sujet d'étude très important avec l'avènement de la robotique collaborative et la présence toujours accrue des robots dans la vie de tous les jours. Les travaux présentés se concentrent sur l'approche macro-mini à titre d'interface haptique, plus particulièrement trois aspects importants lors de la conception d'un système macro-mini. Le premier chapitre permet d'apprendre à parler physiquement au robot (lui faire comprendre les intentions de l'humain) dans un contexte de déplacement collaboratif. Plus particulièrement, il consiste à comparer différentes méthodes pour traduire les déplacements (ou les intentions) de l'humain à un robot. Dans ce cas, des coquilles à faible impédance sont attachées sur les membrures d'un manipulateur sériel. L'humain interagit avec le robot en déplaçant ces coquilles. La réponse du robot est alors de se déplacer de façon à ce que ses membrures suivent les déplacements de la coquille qui leur est associée pour ainsi les conserver dans leur configuration neutre. Le déplacement d'une coquille par rapport à sa membrure est considéré comme une vitesse désirée de ladite membrure. Il s'agit donc de résoudre le problème cinématique inverse pour traduire le déplacement de la coquille en déplacement articulaire. Cependant, différentes stratégies peuvent être employées pour résoudre ce problème. Ce projet vise donc à comparer l'efficacité de ces méthodes. Pour y parvenir, une étude générale de ces méthodes est réalisée. Puis, un formalisme mathématique est décrit pour adapter ces méthodes à l'application présente. En effet, en fonction du type de coquille et de la membrure, tous les degrés de liberté ne sont pas nécessairement possibles. Ce formalisme mathématique permet de tenir compte de ces contraintes. Ensuite, des simulations sont réalisées pour observer le comportement des méthodes étudiées et un indice de performance est choisi pour les comparer. Ensuite, une fois que le robot est en mesure de comprendre efficacement les intentions humaines, le problème de conception consiste à déterminer comment détecter ses intentions à l'aide d'une interface et surtout, la taille que cette interface doit prendre pour bien parler. En d'autres mots, le second chapitre présente une analyse de l'impact du débattement d'un mécanisme mini actif sur la bande passante mécanique de mouvements possibles lors de la manipulation de charges lourdes. En effet, l'approche macro-mini utilise généralement un robot mini passif, ce qui fait que l'utilisateur ressent toute l'inertie de la charge. Lorsque la charge devient suffisamment lourde, il est nécessaire pour le mini d'appuyer l'utilisateur en fournissant une force pour conserver l'interaction naturelle. Ceci signifie que le mini doit être actionné, i.e., actif. Il est cependant important que le mini reste rétrocommandable pour le bon fonctionnement de l'approche macro-mini. Des modèles mathématiques du système sont donc présentés. Les contraintes relatives à l'application sont décrites ainsi que leur impact sur la bande passante. À l'aide d'un contrôleur simple, des simulations sont réalisées à l'aide des outils développés pour déterminer le débattement nécessaire du mini actif qui permet la bande passante désirée. Enfin, une interface haptique capable de reproduire une poignée de main naturelle et intuitive avec un robot est présentée. Ce chapitre peut être divisé en deux aspects, i.e., la main et le bras. Ici, la main est le robot mini et le bras, le robot macro. D'abord, un prototype de main robotique est conçu et fabriqué. Inspirée de l'anatomie humaine, cette main robotique possède une paume comprimable capable d'émuler celle de l'humain ainsi que trois doigts sous-actionnés. Un pouce passif, relié au niveau de compression de la paume, complète le tout. Le contrôle de la main se fait via une position avec rétroaction, et ce, pour chacun des deux actionneurs (un pour la paume, l'autre pour les trois doigts). Ensuite, la main robotique est montée sur un manipulateur sériel collaboratif (le Kuka LWR), le bras. Ce dernier est contrôlé en impédance autour d'une trajectoire harmonique dans un plan vertical. En fonction des paramètres de la trajectoire (amplitude, fréquence, coefficients d'amortissement et de raideur), ce prototype permet de conférer une personnalité active au robot. L'expérimentation faite auprès de sujets humains permet de déterminer les valeurs considérées plus naturelles pour les différents paramètres de la trajectoire ainsi que diverses pistes à explorer pour des travaux futurs. / This thesis presents the design of a haptic interface capable of rendering a physical human-robot interaction natural and intuitive. It is a very important subject to study with the rise in collaborative robots and the ever-increasing presence of robots in everyday life. The work presented here focuses on the macro-mini architecture as haptic interface, more precisely on three important aspects to consider during the design of a macro-mini system. The first chapter explores how to physically communicate with a robot (make it understand the human's intentions) in a context of collaborative motion. In more details, the goal is to compare different methods to translate human motions (or intentions) to a robot. In this case, low impedance passive articulated shells are mounted on the links of a serial manipulator. The human operator interacts with the robot by displacing the shells. The robot's response is then to move so that its links follow the motion of their associated shell. The better the robot can follow the shells, the closest to their neutral configuration the shells can remain. The shell displacement relative to its link is considered as a desired velocity of the link. The translation of the shell displacement into joint motion then becomes an inverse kinematic problem. Different strategies can be used to solve this problem. This project then aims at comparing the efficiency of those strategies. To this end, a general study of the different strategies is performed. Then, a mathematical formalism is described, adapting said strategies to the present context. Indeed, depending on the type of shell and the position of the link in the chain, all degrees of freedom are not necessarily possible. This formalism takes these limitations into account. Then, simulations are conducted to observe the behaviour of the different strategies studied and a performance index is chosen to compare them. Afterwards, once the robot is capable of efficiently understanding the human intentions, the next step is to determine how to detect the intentions with the help of an interface and, most of all, what size should this interface have so as to communicate well. In other words, the second chapter presents an analysis of the impact that the range of motion of an active mini mechanism has on the mechanical bandwidth for the possible motions during the handling of large payloads. Indeed, the macro-mini architecture generally uses a passive mini robot, which means that the human operator feels the whole inertia of the payload. When the payload becomes sufficiently heavy, it becomes necessary for the mini robot to help the operator by working as well so as to keep the interaction natural. This means that the mini robot should then be actuated, i.e., active. It is however important that the mini robot remains backdrivable for the macro-mini architecture to work properly. Mathematical models are then presented. The limitations related to the application are described, as well as their effect on the bandwidth. With the help of a simple controller, simulations are performed with the tools developed to determine the range of motion necessary for the active mini robot which would allow the desired bandwidth. Finally, a haptic interface capable of emulating a natural and intuitive handshake with a robot is presented. This chapter can be divided into two aspects, i.e., the hand and the arm. Here, the hand is the mini robot and the arm, the macro robot. First, a robotic hand prototype is designed and constructed. Inspired by the human anatomy, this robotic hand has a compliant palm able to emulate a human palm as well as three underactuated fingers. A passive thumb, tied to the palm compression level, completes the hand. The hand control is done with position control with feedback for both actuators (one for the palm, the other for the three fingers). Then, the robotic hand is mounted on a collaborative serial manipulator (the Kuka LWR), the arm. The arm is controlled in impedance around a harmonic trajectory in a vertical plane. Depending on the parameters for the trajectory (amplitude, frequency, stiffness and damping coefficients), this prototype provides an active personality to the robot. Experimentation is conducted with human subjects to determine the values considered more natural for the different trajectory parameters as well as several improvements for the prototype in future works.
2

Interfaces haptiques pour l'interaction physique humain-robot : analyse et mise en œuvre de l'approche macro-mini

Beaudoin, Jonathan, Beaudoin, Jonathan 22 May 2022 (has links)
Cette thèse présente la conception d'une interface haptique capable de rendre l'interaction physique humain-robot naturelle et intuitive. Il s'agit là d'un sujet d'étude très important avec l'avènement de la robotique collaborative et la présence toujours accrue des robots dans la vie de tous les jours. Les travaux présentés se concentrent sur l'approche macro-mini à titre d'interface haptique, plus particulièrement trois aspects importants lors de la conception d'un système macro-mini. Le premier chapitre permet d'apprendre à parler physiquement au robot (lui faire comprendre les intentions de l'humain) dans un contexte de déplacement collaboratif. Plus particulièrement, il consiste à comparer différentes méthodes pour traduire les déplacements (ou les intentions) de l'humain à un robot. Dans ce cas, des coquilles à faible impédance sont attachées sur les membrures d'un manipulateur sériel. L'humain interagit avec le robot en déplaçant ces coquilles. La réponse du robot est alors de se déplacer de façon à ce que ses membrures suivent les déplacements de la coquille qui leur est associée pour ainsi les conserver dans leur configuration neutre. Le déplacement d'une coquille par rapport à sa membrure est considéré comme une vitesse désirée de ladite membrure. Il s'agit donc de résoudre le problème cinématique inverse pour traduire le déplacement de la coquille en déplacement articulaire. Cependant, différentes stratégies peuvent être employées pour résoudre ce problème. Ce projet vise donc à comparer l'efficacité de ces méthodes. Pour y parvenir, une étude générale de ces méthodes est réalisée. Puis, un formalisme mathématique est décrit pour adapter ces méthodes à l'application présente. En effet, en fonction du type de coquille et de la membrure, tous les degrés de liberté ne sont pas nécessairement possibles. Ce formalisme mathématique permet de tenir compte de ces contraintes. Ensuite, des simulations sont réalisées pour observer le comportement des méthodes étudiées et un indice de performance est choisi pour les comparer. Ensuite, une fois que le robot est en mesure de comprendre efficacement les intentions humaines, le problème de conception consiste à déterminer comment détecter ses intentions à l'aide d'une interface et surtout, la taille que cette interface doit prendre pour bien parler. En d'autres mots, le second chapitre présente une analyse de l'impact du débattement d'un mécanisme mini actif sur la bande passante mécanique de mouvements possibles lors de la manipulation de charges lourdes. En effet, l'approche macro-mini utilise généralement un robot mini passif, ce qui fait que l'utilisateur ressent toute l'inertie de la charge. Lorsque la charge devient suffisamment lourde, il est nécessaire pour le mini d'appuyer l'utilisateur en fournissant une force pour conserver l'interaction naturelle. Ceci signifie que le mini doit être actionné, i.e., actif. Il est cependant important que le mini reste rétrocommandable pour le bon fonctionnement de l'approche macro-mini. Des modèles mathématiques du système sont donc présentés. Les contraintes relatives à l'application sont décrites ainsi que leur impact sur la bande passante. À l'aide d'un contrôleur simple, des simulations sont réalisées à l'aide des outils développés pour déterminer le débattement nécessaire du mini actif qui permet la bande passante désirée. Enfin, une interface haptique capable de reproduire une poignée de main naturelle et intuitive avec un robot est présentée. Ce chapitre peut être divisé en deux aspects, i.e., la main et le bras. Ici, la main est le robot mini et le bras, le robot macro. D'abord, un prototype de main robotique est conçu et fabriqué. Inspirée de l'anatomie humaine, cette main robotique possède une paume comprimable capable d'émuler celle de l'humain ainsi que trois doigts sous-actionnés. Un pouce passif, relié au niveau de compression de la paume, complète le tout. Le contrôle de la main se fait via une position avec rétroaction, et ce, pour chacun des deux actionneurs (un pour la paume, l'autre pour les trois doigts). Ensuite, la main robotique est montée sur un manipulateur sériel collaboratif (le Kuka LWR), le bras. Ce dernier est contrôlé en impédance autour d'une trajectoire harmonique dans un plan vertical. En fonction des paramètres de la trajectoire (amplitude, fréquence, coefficients d'amortissement et de raideur), ce prototype permet de conférer une personnalité active au robot. L'expérimentation faite auprès de sujets humains permet de déterminer les valeurs considérées plus naturelles pour les différents paramètres de la trajectoire ainsi que diverses pistes à explorer pour des travaux futurs. / This thesis presents the design of a haptic interface capable of rendering a physical human-robot interaction natural and intuitive. It is a very important subject to study with the rise in collaborative robots and the ever-increasing presence of robots in everyday life. The work presented here focuses on the macro-mini architecture as haptic interface, more precisely on three important aspects to consider during the design of a macro-mini system. The first chapter explores how to physically communicate with a robot (make it understand the human's intentions) in a context of collaborative motion. In more details, the goal is to compare different methods to translate human motions (or intentions) to a robot. In this case, low impedance passive articulated shells are mounted on the links of a serial manipulator. The human operator interacts with the robot by displacing the shells. The robot's response is then to move so that its links follow the motion of their associated shell. The better the robot can follow the shells, the closest to their neutral configuration the shells can remain. The shell displacement relative to its link is considered as a desired velocity of the link. The translation of the shell displacement into joint motion then becomes an inverse kinematic problem. Different strategies can be used to solve this problem. This project then aims at comparing the efficiency of those strategies. To this end, a general study of the different strategies is performed. Then, a mathematical formalism is described, adapting said strategies to the present context. Indeed, depending on the type of shell and the position of the link in the chain, all degrees of freedom are not necessarily possible. This formalism takes these limitations into account. Then, simulations are conducted to observe the behaviour of the different strategies studied and a performance index is chosen to compare them. Afterwards, once the robot is capable of efficiently understanding the human intentions, the next step is to determine how to detect the intentions with the help of an interface and, most of all, what size should this interface have so as to communicate well. In other words, the second chapter presents an analysis of the impact that the range of motion of an active mini mechanism has on the mechanical bandwidth for the possible motions during the handling of large payloads. Indeed, the macro-mini architecture generally uses a passive mini robot, which means that the human operator feels the whole inertia of the payload. When the payload becomes sufficiently heavy, it becomes necessary for the mini robot to help the operator by working as well so as to keep the interaction natural. This means that the mini robot should then be actuated, i.e., active. It is however important that the mini robot remains backdrivable for the macro-mini architecture to work properly. Mathematical models are then presented. The limitations related to the application are described, as well as their effect on the bandwidth. With the help of a simple controller, simulations are performed with the tools developed to determine the range of motion necessary for the active mini robot which would allow the desired bandwidth. Finally, a haptic interface capable of emulating a natural and intuitive handshake with a robot is presented. This chapter can be divided into two aspects, i.e., the hand and the arm. Here, the hand is the mini robot and the arm, the macro robot. First, a robotic hand prototype is designed and constructed. Inspired by the human anatomy, this robotic hand has a compliant palm able to emulate a human palm as well as three underactuated fingers. A passive thumb, tied to the palm compression level, completes the hand. The hand control is done with position control with feedback for both actuators (one for the palm, the other for the three fingers). Then, the robotic hand is mounted on a collaborative serial manipulator (the Kuka LWR), the arm. The arm is controlled in impedance around a harmonic trajectory in a vertical plane. Depending on the parameters for the trajectory (amplitude, frequency, stiffness and damping coefficients), this prototype provides an active personality to the robot. Experimentation is conducted with human subjects to determine the values considered more natural for the different trajectory parameters as well as several improvements for the prototype in future works.
3

Techniques d'interactions mixtes isotonique et élastique pour la sélection 2D et la navigation / manipulation 3D / Isotonic elastic hybrid interaction for 2D and 3D navigation / manipulation

Pan, Qing 19 December 2008 (has links)
Le développement de interaction homme-machine aide les utilisateurs à travailler de manière plus efficace. Les technologies traditionnelles ne peuvent plus satisfaire les nouveaux besoins des applications variées. Enenvironnement 2D WIMP, les périphériques d'entrée isotonique combinés avec un contrôle en position tels que les souris ou touch-pad, souffrent de débrayages qui prennent du temps et rendent l'interaction moins lisse. C'est pire encore lors de l'utilisation d'un petit périphérique avec un grand écran. Les interactions 3D attirent l'attention de nombreux chercheurs. Toutefois, les techniques existantes qui permettent à la fois la navigation et de manipuler les objets ne sont pas naturelles ni suffisamment efficaces pour être totalement acceptées par les utilisateurs. De nouveaux périphériques d'entrée et des techniques d'interaction doivent être proposées afin d'améliorer la qualité de l'interaction. Dans cette thèse, nous proposons deux périphériques d'entrée composés d'une zone isotonique avec un contrôle en position et une zone élastique avec un contrôle en vitesse; La première méthode RubberEdge est une méthode en 2D pour réduire le débrayage et la seconde méthode Haptic Boundary est une méthode 3D qui rend plus efficace les manipulations d'objets et l'exploration de l'environnement virtuel. Pour RubberEdge, nous avons adopté la simulation de rotation d'un disque et un traitement mathématique dans sa fonction de transfert pour garantir un passage lisse du contrôle en position au contrôle en vitesse. Une évaluation d'une tache de sélection en 2D a été réalisée. Le résultat a montré que RubberEdge est 20% plus performant que le contrôle en position. Nous avons ensuite proposé deux modèles prédictifs pour le temps de sélection pour le contrôle en position ainsi que le contrôle hybride de RubberEdge. Nous avons présenté également une mise en oeuvre de RubberEdge pour ordinateur portable. Haptic Boundary permet des manipulations d'objets précises dans sa zone isotonique et la manipulation de la caméra sur sa paroi. Deux types de retour d'effort ont été adoptés pour fournir des mouvements de caméra plus riches et pour éviter un passage de mode explicite qui pourrait augmenter la charge mentale des utilisateurs. La taille et la forme de la zone isotonique ont été choisies avec soin afin de maximiser les avantages du contrôle en vitesse de deux types de retour d'effort. Une évaluation de la tache du montage d'une voiture virtuelle est réalisée. L'expérience a montré que Haptic Boundary est 50% plus performant que l'interface uni-manuelle avec un changement du mode explicite. Après analyse des résultats, un mode d'inspection en orbite est mis en place pour améliorer l'usage de l'Haptic Boundary. / The development of human-computer interaction technologies help people to work more efficiently. Meanwhile, traditional technologies could not fulfill the new born requirements in diverse situations. ln 2D WIMP environment the popular isotonic position control device, such as mouse, touch pad, suffers from clutching which is time-consuming and makes the interaction less smooth. lt is getting worse when using a small input device to interact with a larger screen. 3D interactions attract attentions of many researchers. However, the existing techniques allowing both object and view manipulations are not natural or efficient enough to be totally accepted by users. New input devices and corresponding interaction techniques should be proposed to improve the interaction quality. ln this thesis, we propose two techniques based on isotonic-position and elastic-rate control spaces: 2D RubberEdge for reducing the clutching and 3D Haptic Boundary for efficient object manipulations and exploration in VE. For RubberEdge, we adopted a simulation of the ration of a disc, and a mathematical treatment in its mapping function to guarantee a smooth switch between position and rate control. An evaluation of a 2D selecting task was performed. The result showed that RubberEdge outperforms position-only control by 20%. We then proposed two predictive models for selection time with position-only control and with the hybrid control of RubberEdge. We also presented the first RubberEdge prototype for laptop touchpad. Haptic Boundary allows precise object manipulations inside its isotonic zone and camera manipulation on its boundary. Two kinds of force feedbacks were adopted to provide richer camera motions and to avoid the explicit mode switch which greatly increases user's mentalload. The shape and size of isotonic zone is carefully chosen to maximize the benefit of the rate control with both two force feedbacks. An evaluation of car assembling task was performed. The result showed that Haptic Boundary outperformed the unimanual interface with explicit switch by 50%. After analyze the experiment result, the orbiting inspection is combined to enhance the applicability of Haptic Boundary.
4

Dynamic spatial vibration form generation using modal decomposition : application to haptic surface / Géenération dynamiques de formes spatiales de vibrations en utilisant la décomposition modale : application à la surface haptique

Enferad, Ehsan 12 November 2018 (has links)
Actuellement, l'interaction haptique est visualisée, il a été démontré que le retour tactile améliore l'expérience et améliore la productivité en allégeant la charge visuelle.La plupart des technologies de retour haptique disponibles aujourd'hui sont basées sur une vision globale du monde. Ce travail aborde ce problème en développant une méthode utilisant des ondes élastiques pour réaliser des déformations de flexion planes hors plan sur une plaque mince. Dans cette étude, la décomposition modale est proposée pour obtenir une déformation contrôlée localement (stimulation haptique). L'approche nécessite seulement la connaissance du comportement modal de la structure. Cette connaissance peut être définie en utilisant sa projection sur les formes de mode. Pour des considérations pratiques, Une méthode pour définir les forces motrices dans l’espace modal. Les tensions réelles à appliquer aux actionneurs sont ensuite déduites. La méthodologie est validée sur plusieurs démonstrateurs de géométries différentes. La possibilité de contrôler l’un des deux modes de fonctionnement à l’aide d’un seul actionneur est validée en focalisant une forme prédéfinie à différents endroits. Pour éviter la limitation de la tension, un prototype à plusieurs actionneurs a été développé avec plus de vitesses. Les résultats confirment la polyvalence de la méthode. La robustesse face à l'identification des incertitudes et de la troncature est évaluée et proposée. Des tests haptiques préliminaires, avec des champs de vitesse contrastés et localisés sont présentés, montrant des résultats tangibles pour la différenciation et la localisation des stimuli par l'utilisateur. / Currently, the haptic interaction on screens is visual, although it has been demonstrated that tactile feedback enhances the experience and improves the productivity by relieving the visual load.Most of the haptic feedback technologies available today are based on global stimulation which limit their use for collaborative device interfaces or control panels for instance. This work address this problem by developing a method that uses elastic waves to realize localized out of plane bending deformations on a thin plate. In this study modal decomposition is proposed to realized controlled local deformation (haptic stimulation). The approach only necessitates the knowledge of the modal behavior of the structure which can be extracted from finite elements analysis or identified. By this prior knowledge arbitrary shapes can be defined using its projection on the mode shapes. For practical considerations, a model reduction criterion is proposed as well. A method to define the driving forces is developed which consists in setting the modes transients in the modal space. Actual voltages to be applied to the actuators are then deduced. The methodology is validated on several demonstrators with different geometries. The ability to control in open loop simultaneously over ten modes using a single actuator is validated by focalizing a predefined shape at different locations. To avoid voltage limitation, a prototype with several actuators was realized to create more elaborated shapes with higher velocities. The results confirm the versatility of the method. The robustness towards identification uncertainties and truncation is evaluated, and improvements with regards to identification errors and transient control in relation to the haptic experience are proposed. Preliminary haptic tests, with contrasted and localized velocity fields are presented, showing tangible results as for the differentiation and the localization of the stimuli by the user.
5

Développement d'un mécanisme parallèle entraîné par câbles utilisé comme interface à retour haptique visant la réadaptation physique en environnement immersif

Fortin-Côté, Alexis 24 April 2018 (has links)
Les robots parallèles à câbles sont de plus en plus utilisés et étudiés, particulièrement dans le domaine de la recherche. Une des applications d'intérêts est leur usage en tant qu'interface haptique. Leur grand espace de travail et leur faible inertie en font de bons candidats pour en faire des interfaces de taille humaine. Une des applications intéressantes serait d'utiliser ce type d'interfaces dans le domaine de la santé, plus spécifiquement en réadaptation physique. Comme ces interfaces sont capables de reproduire des efforts à l'utilisateur, celles-ci peuvent être utilisées pour faire travailler les muscles. C'est dans cette optique que les recherches rapportées dans cette thèse ont été accomplies. Cette thèse présente donc premièrement des avancées plus générales aux mécanismes parallèles à câbles permettant leur utilisation en tant qu'interface haptique, pour ensuite se spécialiser dans la création d'un prototype d'interface haptique entraîné par câble combiné à un retour visuel immersif comme un casque de réalité virtuelle par exemple. La thèse se termine avec l'évaluation préliminaire du prototype développé qui est installé dans un centre de recherche en réadaptation physique et qui, dans un avenir rapproché, pourra servir à l'avancement de la recherche dans le domaine de la réadaptation physique. / Cable driven parallel robots are studied and used more every day, especially in the research community. One interesting application is their use as haptic interfaces. Their big workspace and relatively low inertia makes them great candidates for human scale interfaces. One application of haptic interfaces of this scale is in health and physical readaptation. Since those interfaces are able to render forces, they can be used to train or evaluate physical capabilities. Research presented in this thesis aims at furthering knowledge in this domain. Some more general advances needed to make cable driven parallel mechanisms suitable haptic interfaces are presented first and then more specific developments toward the creation of a prototype haptic interface combined with a visual feedback are presented. The thesis ends with preliminary studies on the developed prototype installed in a research facility on physical readaptation.
6

Synthèse et commande de dispositifs haptiques pour la communication à distance : application à une interface robotique anthropomorphe pour la poignée de main

Pedemonte, Nicolo 20 April 2018 (has links)
Les systèmes de communication à distance entre les individus ont évolué significativement au cours des dernières années, de concert avec les innovations technologiques caractérisant notre société. Afin de réaliser une communication réaliste et intuitive, le système doit être capable de stimuler les sens qui sont habituellement impliqués dans l’interaction entre deux personnes, tels que l’ouïe, la vision et le toucher. Le téléphone a représenté une innovation importante dans les communications en permettant enfin de pouvoir parler avec son interlocuteur directement, sans devoir employer un signal codé comme le code Morse. Cette communication a été améliorée en introduisant les appels vidéo, lesquels permettent non seulement d’entendre l’interlocuteur mais aussi de le voir. Plusieurs recherches ont cependant démontré que le sens du toucher joue également un rôle très important dans les interactions entre individus. Une technologie relativement récente, connue comme technologie haptique, aborde le problème de la transmission du sens du toucher à distance, dans le but de mettre en oeuvre une communication complète et encore plus réaliste. Cette technologie a également d’autres applications tout aussi importantes. À titre d’exemple, l’haptique est utilisée dans le domaine de la réadaptation et de l’apprentissage guidé de personnes ayant des déficiences motrices. Cette thèse porte sur le développement de la technologie haptique pour la communication à distance entre deux individus. L’objectif final est la réalisation d’un système permettant aux deux utilisateurs de se serrer la main à distance. Afin d’atteindre cet objectif, nous devons aborder deux problèmes différents, tels que la conception d’une interface capable de reproduire le mouvement désiré et l’implémentation d’une loi de commande garantissant le comportement correct de cette interface. Toujours dans le cadre de l’interaction à distance par le biais d’un dispositif haptique, une interface pour l’apprentissage de l’écriture manuelle est également présentée. Cette application permet de démontrer, entre autres, l’importance d’un signal haptique dans l’interaction humain-humain et son influence sur les utilisateurs. / Remote communication systems have significantly improved in the course of the recent years, in concert with technological innovations of our society. In order to realize a realistic and intuitive communication, the system must activate the part of the sensory system that is normally stimulated in an interaction between two people, i.e., the auditory system, the visual system and the haptic perception system, which concerns touch. The telephone represented an innovating communication system. It allowed to directly talk to the interlocutor without any need for a coded signal such as the Morse code. Remote communications have been further improved with the introduction of the video calls, which allow people not only to talk to but also to see each other. Several researches proved that the sense of touch plays a crucial role in social interactions. Haptic technology, which is relatively recent, approaches the problems related to the perception and the transmission of touch. One objective is to render remote communications even more complete and realistic. Haptic technology is also used in other important applications such as, for instance, rehabilitation and guided learning process of people with movement impairments. This thesis concerns the development of the haptic technology devoted to the implementation of remote communication systems. The final objective is to realize a teleoperation system which allows two users to remotely shake hands. In order to achieve this objective, two main issues must be faced : the design of a haptic interface capable of reproducing the required movement and the implementation of a control law which guarantees the proper response of such an interface. In the framework of a remote interaction via a haptic device, an interface for the training and assessment of handwriting capabilities is also presented. The latter application demonstrates the importance of haptic signals in a remote human-human interaction and its influence on the users.
7

Vers des environnements virtuels plus écologiques : étude des modifications du comportement moteur en réalité virtuelle lors de l'ajout d'informations haptiques par un mécanisme parallèle entraîné par câbles

Faure, Céline 22 January 2020 (has links)
Introduction : Les nouvelles technologies qui permettent de capter et d’analyser les mouvements des utilisateurs ne cessent de se développer et représentent un potentiel intéressant dans le domaine de la santé. Grâce à l’essor de ces nouvelles technologies, des systèmes de réalité virtuelle (RV) clefs en main intègrent les services de réadaptation, et les études démontrent leur capacité à optimiser la rééducation motrice et l’évaluation des clients présentant des troubles du contrôle moteur. Le marché de la RV est ainsi en pleine expansion, et l’ajout d’informations haptiques permettant de modéliser les caractéristiques physiques des entités virtuelles représente un intérêt considérable pour améliorer l’écologie des environnements virtuels (EVs) et le transfert des apprentissages aux activités quotidiennes. Toutefois, l’effet de l’ajout de ces informations sur le comportement moteur des sujets demeure très peu connu. L’objectif principal de cette thèse était ainsi d’évaluer l’impact de l’ajout d’informations haptiques, par un mécanisme parallèle entrainé par câbles (robot à câbles), sur le contrôle moteur de sujets sains, lors de la réalisation de tâches complexes et fonctionnelles dans des EVs. Les deux hypothèses principales étaient que cet ajout améliore le contrôle du mouvement lors de tâche de manutention d’objet ayant des contraintes environnementales statiques, et modifie les stratégies locomotrices proactives en présence de contraintes dynamiques. Méthode : Le comportement moteur de participants sains a été analysé lors de la réalisation de deux tâches. En premier lieu, une tâche de manutention de caisse nécessitant la préhension et le déplacement d’une caisse à partir d’une posture debout a été étudiée. Celle-ci a été réalisée dans un environnement réel et dans des EVs, en absence et en présence d’informations haptiques, relatives aux contraintes physiques de l’étagère et de la caisse manipulée, fournies grâce à un robot à câbles (Chapitre 3, N=12). En second lieu, une tâche nécessitant l’évitement d’avatars au cours de la marche sur un tapis roulant a été réalisée en présence et en absence de risque de contact physique avec les avatars, délivré par un robot à câbles (Chapitre 4, N=10). Les EVs étaient vus au travers d’un visiocasque. Résultats : La première étude a démontré une amélioration des paramètres spatiaux du mouvement réalisé dans l’EV en présente d’informations haptiques, au cours des différentes phases de la tâche de manutention (préhension, montée et descente de la caisse). L’organisation spatiale du mouvement était ainsi plus similaire à ce qui était observé dans un environnement réel, avec un meilleur respect des contraintes environnementales (éloignement plus important de la caisse avec l’étagère, trajectoire plus longue). De plus, le contrôle du mouvement était influencé par la demande de précision requise pour ne pas toucher les étagères en présence d’informations haptiques uniquement. La deuxième étude a démontré la mise en place de stratégies motrices plus précautionneuses pour éviter les avatars lors de l’ajout d’informations haptiques. Les participants tendaient à anticiper plus précocement l’évitement des avatars. Ils maintenaient une distance minimale plus importante avec les avatars et conservaient un espace péripersonnel plus large, indépendamment de l’angle d’approche de l’avatar. Conclusion : L’ajout d’informations haptiques dans les EVs impacte les stratégies motrices proactives des participants sains aussi bien lors de la tâche de manutention de caisse que de locomotion avec évitement d’avatars. Les résultats suggèrent que l’ajout d’informations haptiques favorise la prise en compte des entités virtuelles lors de la planification mouvement. Ces informations haptiques imposent en effet des restrictions plus réalistes dans les possibilités d’actions fournies par les EVs, et modifient probablement l’évaluation des conséquences que représente le contact avec les entités virtuelles. Il serait pertinent de poursuivre l’étude de l’influence de ces informations afin de proposer à des clients ayant des déficiences motrices des environnements encore plus écologiques, qui favorisent l’évaluation et la prise en compte des risques implicites que représentent les entités environnementales. / Introduction: New technologies that capture and analyze user movement are constantly developing and represent a great potential in healthcare. Thanks to the recent technological advances, turnkey virtual reality (VR) systems are progressively integrated into the rehabilitation setting, and studies have demonstrated their ability to optimise sensorimotor rehabilitation and clinical assessment of people with motor control disorders. The market for VR is growing and adding haptic feedback that provides physical characteristics to virtual entities represents a great potential to improve the ecological validity of virtual environments (VE) and to the transfer of learning to daily tasks. However, the impact that adding haptic feedback has on motor behavior remains poorly understood. The main objective of this thesis was to assess the impact of adding haptic feedback, using a novel cable-driven parallel robot, on the motor control of healthy participants during complex, functional tasks in VEs. The two mains hypotheses were that haptic feedback improves motor control during a handling task with static environmental constraints and modifies proactive locomotor strategies in the presence of dynamic constraints. Method: The motor behavior of healthy participants was analysed during two tasks. First, a manual handling task was studied during which participants grasped and moved a crate while standing. This task was realised in a real environment and in VEs with the absence and the presence of haptic information. The latter simulated the physical constraints of the shelf and the crate to be manipulated using a cable-driven robot (Chapter 3, N=12). Second, avatar avoidance tasks were realised when participants walked on a self-paced treadmill in the absence and then in the presence of a risk of physical contact with avatars. Contact was simulated by a cable-driven robot (Chapter 4, N=10). VEs were viewed through a head mounted display for all tasks. Results: The first study showed that adding haptic feedback to the VE improved spatial parameters of movement realised in a VE during all phases of movement (reaching, ascent and descent phases). The spatial organisation of movement was closer to those observed in a physical environment, and better respected environmental constraints (higher clearances from the shelf and longer trajectories). Moreover, movement control was influenced by task precision required to avoid any contact with the shelf in the presence of haptic feedback only. The second study demonstrated that when avoiding avatars in VR, more cautious behavior was measured in the presence of potential physical contact. Participants tended to start their avoidance strategy earlier and increased minimum clearance along with a larger personal space regardless of the avatar’s approach angle. Conclusion: Adding haptic feedback in VEs impacts the proactive motor strategies of healthy participants during a manual handling task as well as a locomotor task involving the avoidance of avatars. These results suggest that adding haptic feedback enhances one’s consideration of virtual entities during movement planning. Haptic information imposes more realistic restrictions on the actions afforded by EVs, and likely modifies the perceived consequences of potential contact with virtual entities. It will be important to continue to study the impact of haptic feedback within VEs to provide even more ecological environments to people with motor deficits in order to improve assessment and the consideration of implicit risks posed by the environment.
8

Bras exosquelette haptique : conception et contrôle / Haptic arm exoskeleton : conception and control

Letier, Pierre 07 July 2010 (has links)
Ce projet s’inscrit dans l’effort développé par l’Agence Spatiale Européenne (ESA)pour robotiser les activités extravéhiculaires à bord de la Station Spatiale Internationale et lors des futures missions d’exploration planétaire. Un aspect important de ces projets concerne le retour de force et la capacité, pour la personne qui commande les mouvements du robot, à ressentir les efforts qui lui sont appliqués. Le but est d’améliorer la qualité et l’immersion de la téléopération. L’objectif de cette thèse est la conception d’une interface haptique de type exosquelette pour le bras, pour ces missions de téléopération à retour de force. Ce système doit permettre une commande intuitive du robot téléopéré tout en reproduisant le plus fidèlement possible les efforts. Les chapitres 2 et 3 présentent les études réalisées sur un banc de test à 1 degré de liberté, destinées à comprendre le contrôle haptique ainsi qu’à évaluer différentes technologies d’actionnements et de capteurs. Les principales méthodes de contrôle sont décrites théoriquement et comparées en pratique sur le banc de test. Les chapitres 4 et 5 décrivent le développement de l’exosquelette SAM destiné aux futures applications de téléopération spatiale. La conception cinématique, le choix des actionneurs et des capteurs sont décrits. Différentes méthodes de contrôle sont également comparées avec des expériences de réalité virtuelle (sans robot esclave) et de téléopération. Pour finir, le chapitre 6 présente le projet EXOSTATION, un démonstrateur de téléopération haptique spatiale, dans lequel SAM est utilisé comme interface maître.
9

Evaluation des effets de l'ajout d'interfaces haptiques sur le suivi manuel de trajectoires

Bluteau, Jérémy 02 June 2010 (has links) (PDF)
Les interfaces haptiques sont des dispositifs relativement récents issus du monde de la robotique et de l'informatique, qui permettent de générer des retours sensoriels à destination de l'utilisateur. Or, il est difficile à l'heure actuelle d'identifier avec précision les influences de ces retours sensoriels sur la réalisation de tâches dans lesquelles ils se trouvent appliqués. Par exemple, pouvons nous utiliser ces dispositifs en vue de fournir une aide (ou un guidage) au geste réalisé ? Le fait d'ajouter des informations tactiles modifie-t-il notre perception de la tâche ? Comment le geste d'un chirurgien sera-t-il modifié en présence d'un dispositif haptique dans un simulateur de chirurgie ? Afin d'apporter des éléments de réponse à ces multiples interrogations, nous avons étudié les effets de l'ajout d'interfaces haptiques ou/et tactiles sur le suivi manuel de trajectoires bidimensionnelles ou tridimensionnelles au mode visuel classique de retour d'informations. Ce travail se situe à la frontière de plusieurs disciplines impliquant la compréhension des mécanismes cognitifs de traitement des informations somesthésique multi sensorielles (psychologie cognitive), l'étude du fonctionnement de ces dispositifs et donc la manière dont les informations numériques sont calculées (informatique et robotique) et la mise en œuvre de ces appareils dans une contexte de simulation (réalité virtuelle). Suite à une première partie bibliographique sur les caractéristiques du toucher, les dispositifs haptique et la problématique de guidage haptique, de nombreuses questions relatives à l'analyse de la performance humaine subsistent. Nos premières contributions quant au choix de méthodes d'analyses et des indices liés à la mesure de la performance du geste manuel sont exposées dans la seconde partie de ce rapport. L'étude proprement dite de l'influence des dispositifs haptique a été conduite dans la troisième partie de ce manuscrit, à travers une série d'expérimentations impliquant des trajectoires bidimensionnelles (geste d'écriture) ou tridimensionnelles (en réalité virtuelle ou dans l'utilisation au sein d'un simulateur de chirurgie), différents types de dispositifs haptiques (vibrotactiles ou à retour d'effort) et de multiples tâches (écriture, manipulation dans une configuration de réalité virtuelle ou encore chirurgie de la base du crâne). Ces expérimentations nous ont permis d'apporter une meilleure compréhension des implications des dispositifs haptiques sur le geste manuel en terme de modification des indices haptiques présents et de guidage haptique. La dernière partie de ce rapport intègre nos résultats de recherches dans une discussion transversale, apportant des tentatives de réponses à la problématique du sujet et un certain nombre de perspectives.
10

Development and control of a robotic system for no-scar surgery / Développement et contrôle d'un système robotique pour la chirurgie sans cicatrice

De Donno, Antonio 13 December 2013 (has links)
La chirurgie sans cicatrices, visant à réaliser des opérations chirurgicales sans cicatrices visibles, est l'avant-garde dans le domaine de la chirurgie mini-invasive. L'absence d'instruments adéquats est l'un des freins à son utilisation en routine clinique. Dans ce contexte, nous introduisons un nouveau robot chirurgical téléopéré, composé d'un endoscope et de deux instruments flexibles, avec 10 DDL motorisés. Cette thèse explore les différentes façons de contrôler le système. La cinématique du robot est analysée et différentes stratégies de contrôle maître/esclave, allant du contrôle articulaire au Cartésien, sont proposées. Ces stratégies ont été testés sur un simulateur virtuel ainsi que sur le système réel en laboratoire et en ex-vivo. Les résultats montrent qu’un seul utilisateur est capable de contrôler le robot et d’effectuer des tâches complexes en utilisant deux interfaces haptiques. / No-scar surgery, which aims at performing surgical operations without visible scars, is the vanguard in the field of Minimally Invasive Surgery (MIS). The lack of adequate instrumentation is one of the issues to its clinical routine use. In this context, we introduce a novel teleoperated surgical robot, consisting of an endoscope and two flexible instruments, with 10 motorized DOFs. This thesis investigates the possibilities to control the system. The robot kinematics is analyzed, and differentmaster/slave control strategies, ranging from joint to Cartesian control, are proposed. These strategies have been tested on a specifically developed virtual simulator and on the real system in laboratory and ex-vivo experiments. The results show that a single user is capable to control the robotic system and to perform complex tasks by means of two haptic interfaces.

Page generated in 0.4732 seconds