• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 44
  • 44
  • 19
  • 17
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Interference Management and Call Admission Control in Two-Tier Cellular Wireless Networks

Saquib, Nazmus 13 February 2013 (has links)
Two-tier macrocell-femtocell network is considered an efficient solution to enhance area spectral-efficiency, improve cell coverage and provide better quality-of-service (QoS) to mobile users. However, interference and mobility management are considered to be the major issues for successful deployment of macrocell-femtocell network. In this thesis, a unified framework is developed for interference management, resource allocation, and call admission control (CAC) for two-tier macrocell-femtocell network. Fractional frequency reuse (FFR) is considered to provide both link-level and call-level QoS measures for mobile users. In this framework, joint resource allocation and interference coordination problem is formulated as an optimization problem to obtain design parameters for sectored FFR. The CAC problem is formulated as Semi-Markov Decision Process and Value Iteration Algorithm is used to obtain optimal admission control policy. Performance of this framework is evaluated through simulations. The performance evaluation results show that the proposed framework outperforms traditional non-optimized FFR scheme in two-tier network.
12

On Using D2D Collaboration and a DF-CF Relaying Scheme to Mitigate Channel Interference

Hassan, Osama 12 1900 (has links)
Given the exponentially increasing number of connected devices to the network which will lead to a larger number of installed celluar towers and base stations that are in closer proximity to one another when compared to the current cellular network setup, and the increasing demand of higher data rates by end users, it becomes essential to investigate new methods that will more effectively mitigate the larger interference introduced by the more packed celluar grid and that result in higher data rates. This paper investigates using Device-to-Device communication where neighboring users can cooperate to mitigate the correlated interference they both receive, where one user acts as a relay and the other as the intended destination of a broadcast message sent by the source base station. The setup studied utalizes a non-orthogonal multiple access (NOMA) scheme and a combined decode-forward and compress-forward relaying scheme. We show that this combined scheme outperforms the individual schemes for some channels and network setups, or reduces to either scheme when the combination does not offer any achievable rate gains. The performance of each scheme is measured with respect to the locations of the base station and the two devices, and to the capacity of the digital link between the users.
13

Advanced interference management techniques for future wireless networks

Razavi, Seyed Morteza January 2014 (has links)
In this thesis, we design advanced interference management techniques for future wireless networks under the availability of perfect and imperfect channel state information (CSI). We do so by considering a generalized imperfect CSI model where the variance of the channel estimation error depends on the signal-to-noise ratio (SNR). First, we analyze the performance of standard linear precoders, namely channel inversion (CI) and regularized CI (RCI), in downlink of cellular networks by deriving the received signal-to-interference-plus-noise ratio (SINR) of each user subject to both perfect and imperfect CSI. In this case, novel bounds on the asymptotic performance of linear precoders are derived, which determine howmuch accurate CSI should be to achieve a certain quality of service (QoS). By relying on the knowledge of error variance in advance, we propose an adaptive RCI technique to further improve the performance of standard RCI subject to CSI mismatch. We further consider transmit-power efficient design of wireless cellular networks. We propose two novel linear precoding techniques which can notably decrease the deployed power at transmit side in order to secure the same average output SINR at each user compared to standard linear precoders like CI and RCI. We also address a more sophisticated interference scenario, i.e., wireless interference networks, wherein each of the K transmitters communicates with its corresponding receiver while causing interference to the others. The most representative interference management technique in this case is interference alignment (IA). Unlike standard techniques like time division multiple access (TDMA) and frequency division multiple access (FDMA) where the achievable degrees of freedom (DoF) is one, with IA, the achievable DoF scales up with the number of users. Therefore, in this thesis, we quantify the asymptotic performance of IA under a generalized CSI mismatch model by deriving novel bounds on asymptotic mean loss in sum rate and the achievable DoF. We also propose novel least squares (LS) and minimum mean square error (MMSE) based IA techniques which are able to outperform standard IA schemes under perfect and imperfect CSI. Furthermore, we consider the implementation of IA in coordinated networks which enable us to decrease the number of deployed antennas in order to secure the same achievable DoF compared to standard IA techniques.
14

Interference management in wireless cellular networks

Burchardt, Harald Peter January 2013 (has links)
In wireless networks, there is an ever-increasing demand for higher system throughputs, along with growing expectation for all users to be available to multimedia and Internet services. This is especially difficult to maintain at the cell-edge. Therefore, a key challenge for future orthogonal frequency division multiple access (OFDMA)-based networks is inter-cell interference coordination (ICIC). With full frequency reuse, small inter-site distances (ISDs), and heterogeneous architectures, coping with co-channel interference (CCI) in such networks has become paramount. Further, the needs for more energy efficient, or “green,” technologies is growing. In this light, Uplink Interference Protection (ULIP), a technique to combat CCI via power reduction, is investigated. By reducing the transmit power on a subset of resource blocks (RBs), the uplink interference to neighbouring cells can be controlled. Utilisation of existing reference signals limits additional signalling. Furthermore, cell-edge performance can be significantly improved through a priority class scheduler, enhancing the throughput fairness of the system. Finally, analytic derivations reveal ULIP guarantees enhanced energy efficiency for all mobile stations (MSs), with the added benefit that overall system throughput gains are also achievable. Following this, a novel scheduler that enhances both network spectral and energy efficiency is proposed. In order to facilitate the application of Pareto optimal power control (POPC) in cellular networks, a simple feasibility condition based on path gains and signal-to-noise-plus- interference ratio (SINR) targets is derived. Power Control Scheduling (PCS) maximises the number of concurrently transmitting MSs and minimises their transmit powers. In addition, cell/link removal is extended to OFDMA operation. Subsequently, an SINR variation technique, Power SINR Scheduling (PSS), is employed in femto-cell networks where full bandwidth users prohibit orthogonal resource allocation. Extensive simulation results show substantial gains in system throughput and energy efficiency over conventional power control schemes. Finally, the evolution of future systems to heterogeneous networks (HetNets), and the consequently enhanced network management difficulties necessitate the need for a distributed and autonomous ICIC approach. Using a fuzzy logic system, locally available information is utilised to allocate time-frequency resources and transmit powers such that requested rates are satisfied. An empirical investigation indicates close-to-optimal system performance at significantly reduced complexity (and signalling). Additionally, base station (BS) reference signals are appropriated to provide autonomous cell association amongst multiple co-located BSs. Detailed analytical signal modelling of the femto-cell and macro/pico-cell layouts reveal high correlation to experimentally gathered statistics. Further, superior performance to benchmarks in terms of system throughput, energy efficiency, availability and fairness indicate enormous potential for future wireless networks.
15

Efficient Device to Device Communication Underlaying Heterogeneous Networks

Chen, Xue 01 May 2016 (has links)
Device-to-Device communications have the great potential to bring significant performance boost to the conventional heterogeneous network by reusing cellular resources. In cellular networks, Device-to-Device communication is defined as two user equipments in a close range communicating directly with each other without going through the base station, thus offloading cellular traffic from cellular networks. In addition to improve network spectral efficiency, D2D communication can also improve energy efficiency and user experience. However, the co-existence of D2D communication on the same spectrum with cellular users can cause severe interference to the primary cellular users. Thus the performance of cellular users must be assured when supporting underlay D2D users. In this work, we have investigated cross-layer optimization, resource allocation and interference management schemes to improve user experience, system spectral efficiency and energy efficiency for D2D communication underlaying heterogeneous networks. By exploiting frequency reuse and multi-user diversity, this research work aims to design wireless system level algorithms to utilize the spectrum and energy resources efficiently in the next generation wireless heterogeneous network.
16

Flexible Cognitive Small-cells for Next Generation Two-tiered Networks.

Maso, Marco 18 March 2013 (has links) (PDF)
In the last decade, cellular networks have been characterized by an ever-growing user data demand. This caused increasing capacity shortfall and coverage issues, aggravated by inefficient fixed spectrum management policies and obsolete network structures. From a practical point of view, novel technical and architectural solutions have been proposed to frame next generation cellular networks, capable of meeting the identified target performance to satisfy the user data demands. Specifically, new spectrum management policies based on the so-called dynamic spectrum access (DSA), together with hierarchical approaches to network planning, where a tier of macro base stations is underlaid with a tier of massively deployed low-power small base stations, are seen as promising candidates to achieve this scope. The resulting two-tiered network layout may improve the capacity of current networks in several ways, thanks to a better average link quality between the devices, a more efficient usage of spectrum resources and a potentially higher spatial reuse. In this thesis, we focus on the challenging problem arising when the two tiers share the transmit band, to capitalize on the available spectrum and avoid possible inefficiencies. In this case, the coexistence of the two tiers is not feasible, if suitable interference management techniques are not designed to mitigate/cancel the mutual interference generated by the active transmitters in the network. This thesis is divided in three main parts, and proposes a rather exhaustive approach to the development of new DSA and interference management techniques, to go from the theoretical basis up to a proof-of-concept development.
17

Transmission strategies for wireless multiple-antenna relay-assisted networks

Truong, Kien Trung 12 July 2012 (has links)
Global mobile data traffic has more than doubled in the past four years, and will only increase throughout the upcoming years. Modern cellular systems are striving to enable communications at high data rates over wide geographical areas to meet the surge in data demand. This requires advanced technologies to mitigate fundamental effects of wireless communications like path-loss, shadowing, small-scale fading, and interference. Two of such technologies are: i) deploying multiple antennas at the transmitter and receiver, and ii) employing an extra radio, called the relay, to forward messages from the transmitter to the receiver. The advantages of both technologies can be leveraged by using multiple antennas at the relay, transmitter, and receiver. Multiple-antenna relay-assisted communication is emerging as one promising technique for expanding the overall capacity of cellular networks. Taking full advantage of multiple-antenna relay-assisted cellular systems requires transmission strategies for jointly configuring the transmitters and receivers based on knowledge of the wireless propagation medium. This dissertation proposes such transmission strategies for wireless multiple-antenna relay-assisted systems. Two popular types of relays are considered: i) amplify-and-forward relays (the relays simply apply linear signal processing to their observed signals before retransmitting) and ii) decode-and-forward relays (the relays decode their observed signals and then re-encode before retransmitting). The first part of this dissertation considers the three-node multiple-antenna amplify-and-forward relay channel. Algorithms for adaptively selecting the number of data streams and subsets of transmit antennas at the transmitter and relay to provide reliable transmission at a guaranteed rate are proposed. Expressions for extracting spatial characteristics of the end-to-end multiple-antenna relay channel are derived. The second part of the dissertation presents interference management strategies that are developed specifically for two models of multiple-antenna relay interference channels where a number of relays assist multiple transmitters to communicate with multiple receivers. One model uses amplify-and-forward relays while the other uses decode-and-forward relays. Based on the idea of interference alignment, these strategies aim at maximizing the sum of achievable end-to-end rates. Simulation results show that the proposed transmission strategies with multiple-antenna relays achieve higher capacity and reliability than both those without relays and those with single-antenna relays. / text
18

Interference alignment from theory to practice

El Ayach, Omar 24 October 2013 (has links)
Wireless systems in which multiple users simultaneously access the propagation medium suffer from co-channel interference. Untreated interference limits the total amount of data that can be communicated reliably across the wireless links. If interfering users allocate a portion of the system's resources for information exchange and coordination, the effect of interference can be mitigated. Interference alignment (IA) is an example of a cooperative signaling strategy that alleviates the problem of co-channel interference and promises large gains in spectral efficiency. To enable alignment in practical wireless systems, channel state information (CSI) must be shared both efficiently and accurately. In this dissertation, I develop low-overhead CSI feedback strategies that help networks realize the information-theoretic performance of IA and facilitate its adoption in practical systems. The developed strategies leverage the concepts of analog, digital, and differential feedback to provide IA networks with significantly more accurate and affordable CSI when compared to existing solutions. In my first contribution, I develop an analog feedback strategy to enable IA in multiple antenna systems; multiple antennas are one of IA's key enabling technologies and perhaps the most promising IA use case. In my second contribution, I leverage temporal correlation to improve CSI quantization in limited feedback single-antenna systems. The Grassmannian differential strategy developed provides several orders of magnitude in CSI compression and ensures almost-perfect IA performance in various fading scenarios. In my final contribution, I complete my practical treatment of IA by revisiting its performance when CSI acquisition overhead is explicitly accounted for. This last contribution settles the viability of IA, from a CSI acquisition perspective, and demonstrates the utility of the proposed feedback strategies in transitioning interference alignment from theory to practice. / text
19

Small cell and D2D offloading in heterogeneous cellular networks

Ye, Qiaoyang 08 September 2015 (has links)
Future wireless networks are evolving to become ever more heterogeneous, including small cells such as picocells and femtocells, and direct device-to-device (D2D) communication that bypasses base stations (BSs) altogether to share stored and personalized content. Conventional user association schemes are unsuitable for heterogeneous networks (HetNets), due to the massive disparities in transmit power and capabilities of different BSs. To make the most of the new low-power infrastructure and D2D communication, it is desirable to facilitate and encourage users to be offloaded from the macro BSs. This dissertation characterizes the gain in network performance (e.g., the rate distribution) from offloading users to small cells and the D2D network, and develops efficient user association, resource allocation, and interference management schemes aiming to achieve the performance gain. First, we optimize the load-aware user association in HetNets with single-antenna BSs, which bridges the gap between the optimal solution and a simple small cell biasing approach. We then develop a low-complexity distributed algorithm that converges to a near-optimal solution with a theoretical performance guarantee. Simulation results show that the biasing approach loses surprisingly little with appropriate bias factors, and there is a large rate gain for cell-edge users. This framework is then extended to a joint optimization of user association and resource blanking at the macro BSs – similar to the enhanced intercell interference coordination (eICIC) proposed in the global cellular standards, 3rd Generation Partnership Project (3GPP). Though the joint problem is nominally combinatorial, by allowing users to associate to multiple BSs, the problem becomes convex. We show both theoretically and through simulation that the optimal solution of the relaxed problem still results in a mostly unique association. Simulation shows that resource blanking can further improve the network performance. Next, the above framework with single-antenna transmission is extended to HetNets with BSs equipped with large-antenna arrays and operating in the massive MIMO regime. MIMO techniques enable the option of another interference management: serving users simultaneously by multiple BSs – termed joint transmission (JT). This chapter formulates a unified utility maximization problem to optimize user association with JT and resource blanking, exploring which an efficient dual subgradient based algorithm approaching optimal solutions is developed. Moreover, a simple scheduling scheme is developed to implement near-optimal solutions. We then change direction slightly to develop a flexible and tractable framework for D2D communication in the context of a cellular network. The model is applied to study both shared and orthogonal resource allocation between D2D and cellular networks. Analytical SINR distributions and average rates are derived and applied to maximize the total throughput, under an assumption of interference randomization via time and/or frequency hopping, which can be viewed as an optimized lower bound to other more sophisticated scheduling schemes. Finally, motivated by the benefits of cochannel D2D links, this dissertation investigates interference management for D2D links sharing cellular uplink resources. Showing that the problem of maximizing network throughput while guaranteeing the service of cellular users is non-convex and hence intractable, a distributed approach that is computationally efficient with minimal coordination is proposed instead. The key algorithmic idea is a pricing mechanism, whereby BSs optimize and transmit a signal depending on the interference to D2D links, who then play a best response (i.e., selfishly) to this signal. Numerical results show that our algorithms converge quickly, have low overhead, and achieve a significant throughput gain, while maintaining the quality of cellular links at a predefined service level. / text
20

Advanced interference management techniques for future generation cellular networks

Aquilina, Paula January 2017 (has links)
The demand for mobile wireless network resources is constantly on the rise, pushing for new communication technologies that are able to support unprecedented rates. In this thesis we address the issue by considering advanced interference management techniques to exploit the available resources more efficiently under relaxed channel state information (CSI) assumptions. While the initial studies focus on current half-duplex (HD) technology, we then move on to full-duplex (FD) communication due to its inherent potential to improve spectral efficiency. Work in this thesis is divided into four main parts as follows. In the first part, we focus on the two-cell two-user-per-cell interference broadcast channel (IBC) and consider the use of topological interference management (TIM) to manage inter-cell interference in an alternating connectivity scenario. Within this context we derive novel outer bounds on the achievable degrees of freedom (DoF) for different system configurations, namely, single-input single-output (SISO), multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) systems. Additionally, we propose new transmission schemes based on joint coding across states that exploit global topological information at the transmitter to increase achievable DoF. Results show that when a single state has a probability of occurrence equal to one, the derived bounds are tight with up to a twofold increase in achievable DoF for the best case scenario. Additionally, when all alternating connectivity states are equiprobable: the SISO system gains 11/16 DoF, achieving 96:4% of the derived outer bound; while the MISO/MIMO scenario has a gain of 1/2 DoF, achieving the outer bound itself. In the second part, we consider a general G-cell K-user-per-cell MIMO IBC and analyse the performance of linear interference alignment (IA) under imperfect CSI. Having imperfect channel knowledge impacts the effectiveness of the IA beamformers, and leads to a significant amount of residual leakage interference. Understanding the extent of this impact is a fundamental step towards obtaining a performance characterisation that is more relevant to practical scenarios. The CSI error model used is highly versatile, allowing the error to be treated either as a function of the signal-to-noise ratio (SNR) or as independent of it. Based on this error model, we derive a novel upper bound on the asymptotic mean sum rate loss and quantify the DoF loss due to imperfect CSI. Furthermore, we propose a new version of the maximum signal-to-interference plus noise ratio (Max-SINR) algorithm which takes into account statistical knowledge of the CSI error in order to improve performance over the naive counterpart in the presence of CSI mismatch. In the third part, we shift our attention to FD systems and consider weighted sum rate (WSR) maximisation for multi-user multi-cell networks where FD base-stations (BSs) communicate with HD downlink (DL) and uplink (UL) users. Since WSR problems are non-convex we transform them into weighted minimum mean squared error (WMMSE) ones that are proven to converge. Our analysis is first carried out for perfect CSI and then expanded to cater for imperfect CSI under two types of error models, namely, a norm-bounded error model and a stochastic error model. Additionally, we propose an algorithm that maximises the total DL rate subject to each UL user achieving a desired target rate. Results show that the use of FD BSs provides significant gains in achievable rate over the use of HD BSs, with a gain of 1:92 for the best case scenario under perfect CSI. They also demonstrate the robust performance of the imperfect CSI designs, and confirm that FD outperforms HD even under CSI mismatch conditions. Finally, the fourth part considers the use of linear IA to manage interference in a multi-user multi-cell network with FD BSs and HD users under imperfect CSI. The number of interference links present in such a system is considerably greater than that present in the HD network counterpart; thus, understanding the impact of residual leakage interference on performance is even more important for FD enabled networks. Using the same generalised CSI error model from the second part, we study the performance of IA by characterising the sum rate and DoF losses incurred due to imperfect CSI. Additionally, we propose two novel IA algorithms applicable to this network; the first one is based on minimising the mean squared error (MMSE), while the second is based on Max-SINR. The proposed algorithms exploit statistical knowledge of the CSI error variance in order to improve performance. Moreover, they are shown to be equivalent under certain conditions, even though the MMSE based one has lower computational complexity. Furthermore for the multi-cell case, we also derive the proper condition for IA feasibility.

Page generated in 0.1326 seconds