• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 392
  • 102
  • 79
  • 54
  • 32
  • 13
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 886
  • 160
  • 130
  • 97
  • 85
  • 81
  • 75
  • 74
  • 72
  • 67
  • 59
  • 57
  • 53
  • 51
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Electro-optical Properties of Ultra-Thin Organic Films

Hodges, Ping Y. 02 May 2001 (has links)
Electro-optical properties of thin film are of great interest owing to the perpetual demand for miniaturization and higher speed devices for communication, electronic, and biomedical applications. The thickness of polymer films developed for these applications has decreased dramatically making interfacial effects significant. It is well documented that, in submicron thickness range, both film/substrate & film/air interface are critical. In this study, we probe the dynamics of electro-optical polymer thin films in the sub-micron thickness regime to understand interfacial effects. The polymer chain dynamics of Polypropylene oxide (PPO) under electric field are investigated in this study. The effects of electric field strength, frequency, and polymer molecular weight on the polymer chain dynamics under electric field are studied. Experimental results show that PPO exhibits both piezoelectric and electrorestrictive effects at significantly high frequencies (101kHz range). Conventional organic materials are responsive only at frequencies in <1kHz range. A high signal-to-noise ratio differential interferometry is designed to quantitatively study the effects of film thickness, electric field frequency and amplitude on the dynamic properties of PPO thin films ranging from 30 nm to 400 nm. The interferometer can concurrently monitor the index of refraction, thickness change of polymer films, and birefringence due to the applied electrical field. / Master of Science
122

WAVEFRONT SENSING BY HETERODYNE SHEARING INTERFEROMETRY (WAVEFRONT RECONSTRUCTION).

FREISCHLAD, KLAUS REINHARD. January 1986 (has links)
The operation of a grating lateral shear heterodyne interferometer as a wavefront sensor for atmospherically perturbed wavefronts is analyzed. A novel wavefront sensor design is given and its feasibility is proven by laboratory experiments. The applications in mind are closed-loop active optical systems for compensating atmospheric perturbations and open-loop atmospheric wavefront measuring device. The optical properties of the turbulent atmosphere are summed up and the resulting wavefront sensor requirements are given. Among them are the property of sell-referencing, high white light efficiency, independence of scintillation effects, and high spatial and temporal sampling rates. Then the general heterodyne grating shearing interferometer is introduced. A description of the phase measurement by the heterodyne process in the frequency domain has been derived. The heterodyne process is interpreted as convolutions of the signal with a pair of filter functions, which isolate a particular harmonic term of the signal and provide its phase. The representation of the convolutions in the frequency domain provides an elegant way to analyse the systematic errors of the heterodyning with general, non-sinusoidal signals. Also the random phase errors of the heterodyne process have been determined using Gaussian error propagation. An algorithm is derived to carry out the wavefront reconstructions from the measured differences on a square array of discrete data points. It is based on a modal expansion in complex exponentials, leading to a simple filtering operation in the spatial frequency domain. The algorithm provides unbiased reconstructions over the finite data set. It has minimal error propagation in a least squares sense. It is computationally efficient in that the number of operations required for a reconstruction is approximately proportional to the number of wavefront points, if a Fast-Fourier-Transform algorithm is used. Finally, a compact wavefront sensor design is described fulfilling the requirements posed by the turbulent atmosphere. It determines wavefronts at 24 by 24 points at a sampling rate of 60 Hz. A rms-wavefront error of better than λ/20 can be achieved with astronomical light sources of sixth stellar magnitude. Laboratory experiments proved the feasibility of the design.
123

EXPERIMENTS TO MEASURE THE SPATIAL COHERENCE OF A THERMAL SOURCE.

Pollock, David Boyd. January 1983 (has links)
No description available.
124

Photoacoustic and photothermal detection of trace compounds in water

Hodgkinson, Jane January 1998 (has links)
No description available.
125

Forward looking innovations in electronic speckle pattern interferometry (ESPI)

Montgomery, Paul C. January 1987 (has links)
Electronic Speckle Pattern Interferometry (ESPI) dates from 1971. Attempts at commercial exploitation were unsuccessful; at the beginning of this decade it remained essentially a laboratory technique. Problems arose from the practical operation of the instrument and the nature of the output. Correlation fringes are intrinsically noisy and their quality depends on many interrelated factors. It is shown that by simplifying the optical design and improving the quality of the optical components, the fringe contrast is greatly improved and the instrument is made easier to use. Extensions and improvements to the system are discussed: analogue image processing techniques as a low cost means of improving the appearance of the output; time invariant noise subtraction in time averaged fringes gives similar quality results as that of the subtraction mode; ensemble averaging of time variant noise is a new technique for producing holographic quality results. Electronic speckle contouring (ESC) gives a selection of methods for producing programmable contour spacings and orientations for shape measurement. ESPI is compared with other optical measurement techniques and is shown to have fundamental advantages.
126

Absolute distance metrology using frequency swept lasers

Warden, Matthew Stuard January 2011 (has links)
This thesis describes and evaluates two new interferometric distance measurement methods based upon the well known method of Frequency Scanning Interferometry (FSI). These new methods are known as Dynamic FSI and Cascaded FSI. Dynamic FSI addresses the two problems, commonly seen in previous FSI implementa- tions, of not being able to measure a moving target and having a slow measurement rate. This method measures stationary and moving targets equally well, and can determine the distance to the target at all times during the measurement, in contrast to previous methods, which obtain only a single measured length from a measurement process which can take up to a second to make. Cascaded FSI was developed with the aim of increasing the accuracy and precision of FSI. This method allows for measurements with precision equal to that of displacement interferometry, and also provides a way of measuring length relative to the frequencies of atomic absorption lines, which are inherently more stable length references than a physical length artefact.
127

Non-physical energy in seismic interferometry

King, Simon James January 2012 (has links)
Non-physical arrivals produced by seismic interferometry, the process whereby Green’s functions are synthesized between two points by cross-correlation, crossconvolution or deconvolution, are often considered to provide little information about the Earth’s subsurface. Their contributions are usually suppressed in interferometric Green’s function estimates to suit existing methods of seismic velocity estimation which favour the more familiar physical arrivals. In this thesis we show that the non-physical arrivals retrieved in exploration-type settings are useful for determining the long-wavelength seismic velocity structure and can be used to obtain improved Green’s function estimates. First, we estimate the seismic velocity and layer thickness by measuring the signal coherency along traveltime curves between two receivers in a collection of traces consisting of cross-correlated wavefields, known as the correlation gather. The traveltime curves represent the traveltime differences between wavefields recorded at the two receivers. When the procedure is used to find the velocity and thickness of the uppermost layer, the traveltime curves implicitly incorporate the physical and non-physical wavefields in the Green’s function estimates. When the procedure is applied to a model with more than one layer, the traveltime curves correspond to non-physical wavefields only in the Green’s function estimates. Instead of suppressing multiple reflections as in conventional methods, the procedure incorporates the traveltimes of multiple reflections to constrain velocity and thickness estimates. The procedure above is most suitable for recovering the first-layer seismic velocity. We propose a simpler method to estimate the seismic velocities corresponding to deeper layers. We find that the Green’s functions contain very weak reflections, but are dominated by non-physical refractions if retrieved using a limited source aperture. The seismic velocities are easily identifiable as repeating bright spots after transforming the refraction-dominated Green’s functions to the − p domain. We show that non-physical reflections can be used constructively to provide physical reflections, and therefore improved Green’s function estimates, by using a cross-convolution operation in a new variant of seismic interferometry, called source-receiver interferometry. We also show that non-physical reflections associated with the cross-correlation of reflections from different interfaces allow for the direct estimation of interval velocities and layer thicknesses. This method removes the necessity to first find the root-mean-square velocities and two-way traveltimes required to compute the interval velocities by Dix inversion. Overall, this thesis significantly improves our understanding of how nonphysical energy in seismic interferometry both provides useful information about the Earth’s subsurface and contributes to physical energy in particular interferometric methods.
128

Overview of LBTI: a multipurpose facility for high spatial resolution observations

Hinz, P. M., Defrère, D., Skemer, A., Bailey, V., Stone, J., Spalding, E., Vaz, A., Pinna, E., Puglisi, A., Esposito, S., Montoya, M., Downey, E., Leisenring, J., Durney, O., Hoffmann, W., Hill, J., Millan-Gabet, R., Mennesson, B., Danchi, W., Morzinski, K., Grenz, P., Skrutskie, M., Ertel, S. 04 August 2016 (has links)
The Large Binocular Telescope Interferometer (LBTI) is a high spatial resolution instrument developed for coherent imaging and nulling interferometry using the 14.4 m baseline of the 2x8.4 m LBT. The unique telescope design, comprising of the dual apertures on a common elevation-azimuth mount, enables a broad use of observing modes. The full system is comprised of dual adaptive optics systems, a near-infrared phasing camera, a 1-5 mu m camera (called LMIRCam), and an 8-13 mu m camera (called NOMIC). The key program for LBTI is the Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS), a survey using nulling interferometry to constrain the typical brightness from exozodiacal dust around nearby stars. Additional observations focus on the detection and characterization of giant planets in the thermal infrared, high spatial resolution imaging of complex scenes such as Jupiter's moon, Io, planets forming in transition disks, and the structure of active Galactic Nuclei (AGN). Several instrumental upgrades are currently underway to improve and expand the capabilities of LBTI. These include: Improving the performance and limiting magnitude of the parallel adaptive optics systems; quadrupling the field of view of LMIRcam (increasing to 20"x20"); adding an integral field spectrometry mode; and implementing a new algorithm for path length correction that accounts for dispersion due to atmospheric water vapor. We present the current architecture and performance of LBTI, as well as an overview of the upgrades.
129

Infrared Speckle Observations of Binary Ross 614 AB: Combined Shift-and-Add and Zero-and-Add Analysis

Davey, B. L. K., Cocke, W. J., Bates, R. H. T., McCarthy, D. W., jr., Christou, J. C., Cobb, M. L. 12 1900 (has links)
One -dimensional infrared speckle scans of Ross 614 AB were recorded at a wavelength of 2.2μm. For each scan an estimate of the instantaneous quality of the seeing was calculated and the scan was binned accordingly. The three bins corresponding to the three best seeing conditions were further processed by applying the shift -and -add algorithm to the set of images contained within each bin, thereby generating three shift- and -add images with differing shift -and -add point -spread- functions. After windowing the shift -and -add images (using edge -extension) to reduce the effect of contamination, we have obtained parameters corresponding to the separation and brightness ratio of a two component model of the double star Ross 614 AB by deconvolving the three shift -and -add images with the aid of the zero-and -add technique. Least squares analysis on the positions of the clusters of zeros found from zero- and -add yields a separation of 1.04 arcseconds and a brightness ratio of 4.3 for the binary system at this wavelength. An extension of the processing, which takes explicit account of the nonlinear motion of the scanning mechanism gives improved estimates of 1.04 arcseconds and 3.9 for the separation and brightness ratio, respectively.
130

Decoherence Spectroscopy for Atom Interferometry

Trubko, Raisa, Cronin, Alexander 17 August 2016 (has links)
Decoherence due to photon scattering in an atom interferometer was studied as a function of laser frequency near an atomic resonance. The resulting decoherence (contrast-loss) spectra will be used to calibrate measurements of tune-out wavelengths that are made with the same apparatus. To support this goal, a theoretical model of decoherence spectroscopy is presented here along with experimental tests of this model.

Page generated in 0.093 seconds