Spelling suggestions: "subject:"interferon < alpha.par> "" "subject:"interferon < alpha.a> ""
1 |
Site directed molecular design and performances of Interferon-α2a and Interleukin-4 bioconjugates with PEG alternative polymers / Seitenspezifisches molekulares Design und Eigenschaften von Interferon-α2a und Interleukin-4 Biokonjugaten mit PEG alternativen PolymerenHauptstein, Niklas January 2023 (has links) (PDF)
Serum half-life elongation as well as the immobilization of small proteins like cytokines is still one of the key challenges for biologics. This accounts also for cytokines, which often have a molecular weight between 5 and 40 kDa and are therefore prone to elimination by renal filtration and sinusoidal lining cells. To solve this problem biologics are often conjugated to poly(ethylene glycol) (PEG), which is the gold standard for the so called PEGylation. PEG is a synthetic, non-biodegradable polymer for increasing the hydrodynamic radius of the conjugated protein to modulate their pharmacokinetic performance and prolong their therapeutic outcome. Though the benefits of PEGylation are significant, they also come with a prize, which is a loss in bioactivity due to steric hindrance and most often the usage of heterogeneous bioconjugation chemistries. While PEG is a safe excipient in most cases, an increasing number of PEG related side-effects, such as immunological responses like hypersensitivity and accelerated blood clearance upon repetitive exposure occur, which highlights the need for PEG alternative polymers, that can replace PEG in such cases.
Another promising method to significantly prolong the residence time of biologics is to immobilize them at a desired location. To achieve this, the transglutaminase (TG) Factor XIIIa (FXIIIa), which is an important human enzyme during blood coagulation can be used. FXIIIa can recognize specific peptide sequences that contain a lysine as substrates and link them covalently to another peptide sequence, that contains a glutamine, forming an isopeptide bond. This mechanism can be used to link modified proteins, which have a N- or C-terminal incorporated signal peptide by mutation, to the extracellular matrix (ECM) of tissues.
Additionally, both above-described methods can be combined. By artificially introducing a TG recognition sequence, it is possible to attach an azide group containing peptide site-specifically to the TG, recognition sequence. This allows the creation of a site-selective reactive site at the proteins N- or C-terminus, which can then be targeted by cyclooctyne functionalized polymers, just like amber codon functionalized proteins.
This thesis has focused on the two cytokines human Interferon-α2a (IFN-α2a) and human, as well as murine Interleukin-4 (IL-4) as model proteins to investigate the above-described challenges. IFN-α2a has been chosen as a model protein because it is an approved drug since 1986 in systemic applications against some viral infections, as well as several types of cancer. Furthermore, IFN-α2 is also approved in three PEGylated forms, which have different molecular weights and use different conjugation techniques for polymer attachment. This turns it into an ideal candidate to compare new polymers against the gold standard PEG. Interleukin-4 (IL-4) has been chosen as the second model protein due to its similar size and biopotency. This allows to compare found trends from IFN-α2a with another bioconjugate platform and distinguish between IFN-α2a specific, or general trends. Furthermore, IL-4 is a promising candidate for clinical applications as it is a potent anti-inflammatory protein, which polarizes macrophages from the pro-inflammatory M1 state into the anti-inflammatory M2 state. / Die Verlängerung der Serum-Halbwertszeit sowie die Immobilisierung kleiner Proteine wie Zytokine ist nach wie vor eine der größten Herausforderungen für Biologika. Dies gilt auch für Zytokine, die häufig ein Molekulargewicht zwischen 5 und 40 kDa haben und daher leicht durch die Nierenfiltration und sinusoidale Endothelzellen eliminiert werden können. Um dieses Problem zu lösen, werden Biologika häufig an Poly(ethylenglykol) (PEG) konjugiert, das den Goldstandard für die so genannte PEGylierung darstellt. PEG ist ein synthetisches, biologisch nicht abbaubares Polymer, das den hydrodynamischen Radius des konjugierten Proteins vergrößert, um die pharmakokinetische Leistung zu modulieren und die therapeutische Wirkung zu verlängern. Obwohl die Vorteile der PEGylierung beträchtlich sind, haben sie auch ihren Preis, nämlich einen Verlust an Bioaktivität aufgrund sterischer Hindernisse und meist die Verwendung heterogener Biokonjugationstechniken. Obwohl PEG in den meisten Fällen ein sicherer Hilfsstoff ist, treten immer mehr PEG-bedingte Nebenwirkungen auf, wie z. B. immunologische Reaktionen wie Überempfindlichkeit und beschleunigter Abbau bei wiederholter Exposition, was den Bedarf an alternativen PEG-Polymeren unterstreicht, die PEG in solchen Fällen ersetzen können.
Eine weitere vielversprechende Methode, um die Verweildauer von Biologika deutlich zu verlängern, besteht darin, sie an einem gewünschten Ort zu immobilisieren. Dazu kann die Transglutaminase (TG) Faktor XIIIa (FXIIIa) verwendet werden, die ein wichtiges menschliches Enzym bei der Blutgerinnung ist. FXIIIa kann bestimmte Peptidsequenzen, die ein Lysin enthalten, als Substrate erkennen und sie kovalent an eine andere Peptidsequenz, die ein Glutamin enthält, binden, wobei eine Isopeptidbindung entsteht.
Dieser Mechanismus kann benutzt werden um modifizierte Proteine, welche durch Mutation ein N- oder C-terminal eingebautes Signalpeptid besitzen, mit der extrazellularen Gewebematrix (ECM) zu verknüpfen.
Diese Arbeit konzentriert sich auf die beiden Zytokine humanes Interferon-α2a (IFN-α2a) und humanes sowie murines Interleukin-4 (IL-4) als Modellproteine, um die oben beschriebenen Herausforderungen zu untersuchen. IFN-α2a wurde als Modellprotein ausgewählt, weil es seit 1986 ein zugelassenes Medikament für die systemische Anwendung gegen einige Virusinfektionen und verschiedene Krebsarten ist. Darüber hinaus ist IFN-α2 auch in drei PEGylierten Formen zugelassen, die unterschiedliche Molekulargewichte haben und verschiedene Konjugationstechniken für die Polymeranbindung verwenden. Dies macht es zu einem idealen Kandidaten für den Vergleich neuer Polymere mit dem Goldstandard PEG. Interleukin-4 (IL-4) wurde als zweites Modellprotein gewählt, da es eine ähnliche Größe und Biopotenz aufweist. Dies ermöglicht es, die von IFN-α2a gefundenen Trends mit einer anderen Biokonjugat-Plattform zu vergleichen und zwischen IFN-α2a-spezifischen und allgemeinen Trends zu unterscheiden. Darüber hinaus ist IL-4 ein vielversprechender Kandidat für klinische Anwendungen, da es ein starkes entzündungshemmendes Protein ist, das Makrophagen vom entzündungsfördernden M1-Zustand in den entzündungshemmenden M2-Zustand polarisiert.
|
Page generated in 0.1004 seconds