Spelling suggestions: "subject:"enternal combustion"" "subject:"ainternal combustion""
121 |
The application and effects of variable duration camshaft systems to light duty diesel enginesLancefield, T. M. January 2002 (has links)
The work described in this thesis was carried out to investigate the application of variable valve actuation (VVA) to light-duty diesel engines for use in passenger vehicles. The background to this was that there was little published on the subject and with advanced turbochargers, exhaust gas re-circulation systems and high pressure fuel injection systems reaching maturity it seemed likely that further enhancement of the air management in this type of engine, through VVA would receive greater interest. The first section of this thesis discusses the external pressures on engine manufacturers, from legislation and from the customer expectations, which could be expected to influence the adoption of VVA, while looking at the criteria on which they would assess a VVA system prior to adoption. Section two provides an overview of the effects of VVA and how they may be used to improve engine operation by highlighting the specific features of diesel engines, i.e. cold starting and compression ratio, part load fuel economy, full load torque and transient torque rise, that can be influenced by air management and what characteristics are required from the VVA system in order to provide improvements in these areas. Having identified the key features of a VVA system that would be suitable for use in light duty diesel engines section three presents a brief literature review and discusses the family of non-constant angular velocity VVA systems that were identified as having the correct characteristics and relative simplicity necessary for any system that might be made in high volume production. This section also provides a detailed analysis of one system of this type to highlight its behaviour and impact on valve train design. Software was written to model the selected mechanism and produce the valve lift characteristics for use in simulating the engine's behaviour. Section four provides an overview of engine simulation techniques and some detail of the model constructed for this investigation. It also discusses the additional code and methodologies required to model the turbine, compressor and combustion processes, which required special treatment, and presents data to compare the behaviour of the model with the baseline of known engine behaviour. Section five presents simulation results that show the following possible improvements: a) a 23% increase in torque, b) light part-load fuel economy improvements of 13% and c) transient rise to maximum torque times reduced from 2.3 seconds to 1.6 seconds. It also discusses the features of engine operation with VVA that provide the potential for these improvements in engine operation, quantifies the benefits that might be expected at a large number of operating conditions and discusses the interactions between the VVA and other systems such as the turbo-charger and EGR system. Section six presents conclusions which beside the enumeration of the potential benefits and description of the key effects of VVA, highlights the need for test data to verify the extent to which the benefits can be realised in real engines and suggests areas for future research.
|
122 |
Particle image velocimetry applied to internal combustion engine in-cylinder flowsReeves, Mark January 1995 (has links)
Particle Image Velocimetry (PIV) is now emerging as a powerful tool for the investigation of unsteady fluid mechanics. At the same time, the study and optimisation of in-cylinder flow processes in automotive Internal Combustion (IC) engines is of increasing importance in the design of improved combustion systems with lower emissions and favourable power and efficiency characteristics. This thesis describes the development and application of PIV as a routine diagnostic tool for the investigation of in-cylinder flows in a production geometry single cylinder research engine exhibiting "barrel swirl" or "tumbling" in-cylinder fluid motion. The work has involved the design and installation of a complete PIV engine facility, based around a four-valve, four-stroke Rover research engine equipped with piston crown optical access and a glass cylinder liner. Novel techniques for the on-line monitoring of important experimental parameters have been developed which permit the reliable acquisition of high spatial resolution PIV data from both horizontal and vertical measurement planes within the engine cylinder. A novel optical correction technique has been developed to control the severe particle image degradation which was experienced when imaging vertical planes within the glass cylinder. A simple means for selection of an appropriate corrective lens for this application is described, together with an experimental evaluation of the lens performance. A representative set of PIV images and data from both horizontal and vertical planes are then presented. These have been selected from a comprehensive set of flow mapping experiments in the motored engine. The data are discussed with reference to the work of others in engines of similar geometry and have shed new light on the detailed processes involved in the formation and breakdown of barrel swirl. Initial PIV measurements ahead of a flame under part load, skip fired conditions have also been made in the engine. This has demonstrated the possibility of investigating incylinder flow behaviour under conditions approaching those in a fully firing, production geometry optical engine. Finally, limitations in the PIV technique employed in this work and methods of overcoming them are described and the prospects for further work are discussed.
|
123 |
The effect of combustion chamber design on the combustion rate in an SI engineBrunt, M. F. J. January 1980 (has links)
The effect of combustion chamber design on combustion rate has been investigated experimentally and theoretically. The experimental work concentrated on the measurement of cylinder pressure and flame speed using a piezo-electric pressure transducer and multiple ionisation probes together with a data acquisition/processing system. A total of twenty one chamber designs of varying shape, compression ratio and spark plug arrangement were tested over a range of operating conditions on a single cylinder S.I. engine. The pressure data were analysed to obtain values of pressure rise rate, cyclic dispersion and combustion (mass burn) rate whilst the ionisation data were processed to yield flame travel angles and flame dispersion. The results obtained show that for a given compression ratio, the flame speed is not significantly affected by chamber design. In contrast, the combustion rate and pressure parameters are highly dependent on the chamber design; more compact arrangements giving higher combustion rates and reduced cyclic dispersion. A computer simulation model of the compression, combustion and expansion phases of the engine cycle was developed to predict the effects of the combustion chamber design parameters. Based on the experimental results, the model assumes that the ratio of laminar to turbulent burning velocity is independent of chamber design. The influence of chamber shape on the burnt volume, flame front surface area and heat transfer surface areas is modelled using a simple but effective geometric integration technique. This technique allows an infinite variation of the design parameters to be specified for a large range of chamber shapes with a minimum of input data being required. The model predicts that chamber design does have a major effect on combustion rate and cylinder pressure but shows that the influence of individual design is highly dependent on the setting of all other parameters. The effect of squish area is shown to be due to it changing the compactness of the chamber, optimum squish area being about 50% for conventional engines with higher areas being suited to higher compression ratio designs. Spark plug arrangement is predicted to be the most effective way of controlling the combustion rate with a single centrally located spark plug or alternatively, dual spark plugs, giving large increases in combustion rate. Computer model predictions have been compared directly with experimental results obtained in this study and with experimental results reported by two other independent workers. Good agreement was obtained thereby giving support to the assumption of the flame speed being unaffected 'by chamber design. The model was also used to predict squish velocities in fired engines. The results show that the velocities and, in particular the reverse squish, can be significantly modified by the combustion process with a strong dependence on ignition timing being evident. The predictive model has been modified to yield a heat release program capable of analysing experimental pressure time data to predict combustion rate, flame speed, turbulent burning velocity and many other variables. The predicted flame speeds were in good agreement with corresponding experimental values obtained from ionisation probes. In conclusion, the study has confirmed the importance of combustion chamber design as a means of improving the combustion rate but has shown that the flame speed is not affected by chamber shape (i.e. squish). The semi-empirical simulation model has been shown to predict the effects of the chamber design parameters to an acceptable degree of accuracy.
|
124 |
Closed cycle hydrogen-oxygen fuelled engine system /Bohacik, Tomas Unknown Date (has links)
Thesis (MEng)--University of South Australia, 1998
|
125 |
Closed cycle hydrogen-oxygen fuelled engine system /Bohacik, Tomas Unknown Date (has links)
Thesis (MEng)--University of South Australia, 1998
|
126 |
Indication of cylinder pressure rise rate by means of vibration and acoustic emissions of an internal combustion engineMassey, Jeffery A. January 2008 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2008. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 1, 2008) Includes bibliographical references (p. 127-128).
|
127 |
The vapor pressure of motor fuels and their tendency to vapor lockClarke, Edwin Alfred, Coats, Hal Begtrup, Brown, George Granger, January 1930 (has links)
Thesis (Ph. D.)--University of Michigan, 1930. / Cover title. Caption title: Motor-fuel volatility. v--Vapor pressure and vapor lock [by] E.A. Clarke, Hal B. Coats, and George Granger Brown. Reprinted from Industrial and engineering chemistry, v. 22, June, 1930. "Literature cited": p. 24.
|
128 |
Heat transfer and combustion-chamber deposits in a spark ignition engineBennethum, James E. January 1959 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1959. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
129 |
Inlet manifold water injection to reduce nitric oxide omissionsNicholls, James Edward, January 1969 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1969. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
130 |
A study of in-cylinder combustion processes by using high speed multi-spectral infrared imaging and a robust statistical analysis methodVanderVeer, Joseph R. January 2008 (has links)
Thesis (M.S.)--Rutgers University, 2008. / "Graduate Program in Mechanical and Aerospace Engineering." Includes bibliographical references (p. 78-79).
|
Page generated in 0.1287 seconds