• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 6
  • 3
  • 1
  • Tagged with
  • 44
  • 44
  • 27
  • 20
  • 19
  • 17
  • 12
  • 11
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Heat Transfer in Rectangular Channels (AR=2:1) of the Gas Turbine Blade at High Rotation Numbers

Lei, Jiang 1980- 16 December 2013 (has links)
Gas turbine blade/vane cooling is obtained by circulating the high pressure air from compressor to the internal cooling passage of the blade/vane. Heat transfer and cooling effect in the rotating blade is highly affected by rotation. The typical rotation number for the aircraft engine is in the range of 0~0.25 and for the land based power generation turbine in the range of 0~05. Currently, the heat transfer data at high rotation numbers are limited. Besides, the investigation of heat transfer phenomena in the turn region, especially near hub portion is rare. This dissertation is to study the heat transfer in rectangular channels with turns in the tip or the hub portion respectively at high rotation numbers close to the engine condition. The dissertation experimentally investigates the heat transfer phenomena in a two-pass rectangular channel (AR=W/H=2:1) with a 180 degree sharp turn in the tip portion. The flow in the first passage is radial outward and after the turn in the second passage, the flow direction is radial inward. The hydraulic diameter (Dh) of the channel is 16.9 mm. Parallel square ribs with an attack angle (alpha) of 45 degrees are used on leading and trailing surfaces to enhance the heat transfer. The rib height-to-hydraulic diameter ratio (e/Dh) is 0.094. For the baseline smooth case and the case with rib pitch-to-height ratio (P/e) 10, channel orientation angles (beta) of 90 degrees and 135 degrees were tried to model the cooling passage in the mid and rear portion of the blade respectively. Two other P/e ratios of 5 and 7.5 were studied at beta=135 degrees to investigate their effect on heat transfer. The data are presented under high rotation numbers and buoyancy parameters by varying the Reynolds number (Re=10,000~40,000) and rotation speed (rpm=0~400). Corresponding rotation number and buoyancy parameter are ranged as 0~0.45 and 0~0.8 respectively. The dissertation also studies the heat transfer in a two-pass channel (AR=2:1) connected by a 180 degree U bend in the hub portion. The flow in the first passage is radial inward and after the U bend, the flow in the second passage is radial outward. The cross-section dimension of this channel is the same as the previous one. To increase heat transfer, staggered square ribs (e/Dh=0.094) are pasted on leading and trailing walls with an attack angle (alpha) of 45 degrees and pitch-to-height ratio (P/e) of 8. A turning vane in the shape of half circle (R=18.5 mm, t=1.6 mm) is used in the turn region to guide the flow for both smooth and ribbed cases. Channel orientation angles (beta) of 90 degrees and 135 degrees were taken for both smooth and ribbed cases. The heat transfer data were taken at high rotation numbers close to previous test section.
12

Portaferramentas para torneamento com refrigeração interna baseada na mudança de fase do fluido /

Vicentin, Gilmar Cavalcante. January 2010 (has links)
Orientador: Luiz Eduardo de Ângelo Sanchez / Banca: Vicente Luiz Scalon / Banca: Alisson Rocha Machado / Resumo: A crescente produtividade de aumento na produtividade em operações de usinagem toma cada vez mais importante o desenvolvimento de novas ferramentas de corte e novos métodos de manufatura, os quais devem ter a capacidade de preencher a demanda atual. Deste modo, muitos esforços têm sido direcionados para permitir a utilização de velocidade de corte cada vez maiores. Um grande desafio é controlar a temperatura durante o processo de usinagem, uma vez que a temperatura aumenta com o aumento da velocidade de corte, reduzindo a dureza a quente da ferramenta e alimentando os mecanismos de desgaste. Para minimizar estes efeitos, vários métodos de refrigeração têm sido propostos, cada um com suas vantagens e desvantagens. Os métodos convencionais de refrigeração, que utilizam fluidos de corte, embora possuam eficiência reconhecida, adicionam custos ao processo, além de serem causadores de problemas relacionados com o meio ambiente e com a saúde dos operadores. Neste contexto a usinagem a seco, associada com o emprego de ferramenta com alta dureza a quente, tem sido um bom método para evitar os problemas mencionados. Outra opção é a usinagem criogênica, que utiliza ferramentas de metal duro em temperaturas abaixo de -150ºC, utilizando, para isso, nitrogênio líquido como fluido refrigerante. Entretanto, este método traz alguns problemas, como a necessidade de equipamentos especiais com tamanho significante ao lado da máquina-ferramenta. Neste estudo é proposto o desenvolvimento e a construção de um sistema de refrigeraçã de ferramenta para o processo de tornemaneto, com baixo custo e manutenção simples, composto por um porta-ferramenta, com um fluido refrigerante passando internamente ao seu corpo em um circuito fechado, onde o fluido evapora em uma câmara abaixo do inserto de usinagem, removendo assim calor da ferramenta. O fluido refrigerante passa então através... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The growing need of increase in productivity in machining operations emphasizes the importance of the development of new cutting tools and new manufacturing methods, which have the capacity to fulfill the present demand. In this way, many efforts are directed to enable the utilization of higher cutting speeds. One great challenge is to control the temperature during the machining process, since the temperature rises with the increase of the cutting speed, reducing the hot hardness of the cutting tool and accelerating the tool wear mechanism. To minimize these effects, many cooling methods have been proposed, each one with advantages and disadvantages. The conventional cooling methods, which use cutting fluids, although have recognized efficiency, add costs to the process, besides to cause problems regarding to the environment and operators health. In this context, dry machining, associated with the employment of tools with high hot hardness, has been a good method to avoid these problems. Another option is the cryogenic machinig, which utilizes carbide tools in temperatures lower than - 150ºC, using, for this, liquid nitrogen as cooling fluid. However, this method brings some problems, like the need of special devices with significant size around the machine-tool. In this work, it is proposed the development and the construction of a cooling tool system for turning process, with low cost and simple maintenance, composed by a tool-holder, with a cooling fluid flowing within its body in a loop circuit, where the fluid evaporates just under the insert location, removing heat from it. The cooling fluid passes through a heat exchanger where it condensates and a new cyble is started. As result the development system provides a tool life equal or better than with the cutting fluid application, with clear economic and environmental advantages / Mestre
13

Portaferramentas para torneamento com refrigeração interna baseada na mudança de fase do fluido

Vicentin, Gilmar Cavalcante [UNESP] 17 June 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:28:20Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-06-17Bitstream added on 2014-06-13T19:16:07Z : No. of bitstreams: 1 vicentin_gc_me_bauru.pdf: 1398083 bytes, checksum: b02b474f8b8ff324c644909a8dd89c24 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A crescente produtividade de aumento na produtividade em operações de usinagem toma cada vez mais importante o desenvolvimento de novas ferramentas de corte e novos métodos de manufatura, os quais devem ter a capacidade de preencher a demanda atual. Deste modo, muitos esforços têm sido direcionados para permitir a utilização de velocidade de corte cada vez maiores. Um grande desafio é controlar a temperatura durante o processo de usinagem, uma vez que a temperatura aumenta com o aumento da velocidade de corte, reduzindo a dureza a quente da ferramenta e alimentando os mecanismos de desgaste. Para minimizar estes efeitos, vários métodos de refrigeração têm sido propostos, cada um com suas vantagens e desvantagens. Os métodos convencionais de refrigeração, que utilizam fluidos de corte, embora possuam eficiência reconhecida, adicionam custos ao processo, além de serem causadores de problemas relacionados com o meio ambiente e com a saúde dos operadores. Neste contexto a usinagem a seco, associada com o emprego de ferramenta com alta dureza a quente, tem sido um bom método para evitar os problemas mencionados. Outra opção é a usinagem criogênica, que utiliza ferramentas de metal duro em temperaturas abaixo de -150ºC, utilizando, para isso, nitrogênio líquido como fluido refrigerante. Entretanto, este método traz alguns problemas, como a necessidade de equipamentos especiais com tamanho significante ao lado da máquina-ferramenta. Neste estudo é proposto o desenvolvimento e a construção de um sistema de refrigeraçã de ferramenta para o processo de tornemaneto, com baixo custo e manutenção simples, composto por um porta-ferramenta, com um fluido refrigerante passando internamente ao seu corpo em um circuito fechado, onde o fluido evapora em uma câmara abaixo do inserto de usinagem, removendo assim calor da ferramenta. O fluido refrigerante passa então através... / The growing need of increase in productivity in machining operations emphasizes the importance of the development of new cutting tools and new manufacturing methods, which have the capacity to fulfill the present demand. In this way, many efforts are directed to enable the utilization of higher cutting speeds. One great challenge is to control the temperature during the machining process, since the temperature rises with the increase of the cutting speed, reducing the hot hardness of the cutting tool and accelerating the tool wear mechanism. To minimize these effects, many cooling methods have been proposed, each one with advantages and disadvantages. The conventional cooling methods, which use cutting fluids, although have recognized efficiency, add costs to the process, besides to cause problems regarding to the environment and operators health. In this context, dry machining, associated with the employment of tools with high hot hardness, has been a good method to avoid these problems. Another option is the cryogenic machinig, which utilizes carbide tools in temperatures lower than - 150ºC, using, for this, liquid nitrogen as cooling fluid. However, this method brings some problems, like the need of special devices with significant size around the machine-tool. In this work, it is proposed the development and the construction of a cooling tool system for turning process, with low cost and simple maintenance, composed by a tool-holder, with a cooling fluid flowing within its body in a loop circuit, where the fluid evaporates just under the insert location, removing heat from it. The cooling fluid passes through a heat exchanger where it condensates and a new cyble is started. As result the development system provides a tool life equal or better than with the cutting fluid application, with clear economic and environmental advantages
14

Thermo- und fluiddynamische Untersuchungen zur Innenkühlung von Kolbenstangen

Klotsche, Konrad 06 April 2022 (has links)
Die Kolbenstangeninnenkühlung (KSIK) ist eine Kühltechnologie für Kreuzkopfverdichter, die in verschiedenen Experimenten gezeigt hat, dass sie ein beträchtliches Potenzial zur Wärmeabfuhr aus den thermisch beanspruchten Komponenten im Zylinder- und Packungsbereich besitzt. Dass sie in der Praxis noch nicht zum Einsatz kommt, liegt unter anderem daran, dass ihre Wirkungsweise und insbesondere die thermo- und fluiddynamischen Vorgänge des zweiphasigen Kühlfluids im Stangeninneren nicht ausreichend erforscht sind, um die Wärmeabfuhr für verschiedene Verdichter und Förderaufgaben zu quantifizieren. Die vorliegende Arbeit hat daher zum Ziel, einen Teil dieser Wissenslücke für Kreuzkopfverdichter mit vertikaler Ausrichtung der Kolbenstange zu schließen. Um die relevante Wissensbasis zu Kreuzkopfverdichtern zu vermitteln, werden einleitend ihr Aufbau, ihre Funktionsweise und die Thematik ihrer Kühlung behandelt. Dabei wird unter anderem gezeigt, wie sich die Wärmeabfuhr auf die Energieeffizienz und die auftretenden Maximaltemperaturen auswirkt und welche Wärmemengen durch Reibung an den Dichtungselementen entstehen. Anhand einer exemplarischen Betrachtung von Verdichtern unterschiedlicher Druckniveaus und Förderströme wird deutlich, dass die KSIK vor allem bei niedrigen Drücken und für die Abfuhr der Reibleistungen effektiv eingesetzt werden kann. Die Größe bzw. Leistungsklasse erweist sich dabei nicht als limitierender Faktor. Anschließend erfolgt die Darstellung konventioneller Kühlverfahren sowie die ausführliche Vorstellung der KSIK mit den Themenschwerpunkten: Funktionsweise, Einflussgrößen, Stand der Technik und Einsatzgrenzen. Um die Wärmeabfuhr zu quantifizieren, die mit einer innengekühlten Kolbenstange eines stehenden Kreuzkopfverdichters erreicht wird, werden Messungen an einem Versuchsstand mit einer vertikal-oszillierenden Hohlstange vorgestellt. Insbesondere die Wahl des Kühlfluids sowie der eingefüllte Flüssigvolumenanteil beeinflussen den Wärmetransport, sind aber für den Fall der KSIK bislang nicht untersucht worden. Daher erfolgt zunächst eine Vorauswahl der vier bestgeeigneten Fluide anhand ihrer thermodynamischen Eignung für das Einsatzgebiet der Kreuzkopfverdichter. Bei den Messungen zeigt sich Wasser, insbesondere als Reinstoff-Füllung, aber auch als Gemisch mit Luft, als deutlich bestes Kühlfluid. Mit einer Dampf-Wasser-Füllung kann erwartungsgemäß eine bessere Wärmeabfuhr erzielt werden als mit einer Luft-Wasser-Füllung. Hinsichtlich des optimalen Flüssigvolumenanteils zeigte sich in den Messergebnissen mit Dampf-Wasser-Füllung eine optimale Wärmeabfuhr im Bereich zwischen 30 Vol.-%fl und 70 Vol.-%fl. In dieser relativ großen Spanne treten lediglich geringe Unterschiede hinsichtlich des Wärmetransports auf. Für die untersuchte Versuchsstandkonfiguration und im untersuchen Drehzahlbereich (300 min−1 bis 600 min−1) liegen die zugehörigen axialen Wärmestromdichten zwischen ca. 40 W cm−2 und 80 W cm−2 und die Wärmewiderstände zwischen ca. 0,27 K W−1 und 0,37 K W−1. Für eine Luft-Wasser-Füllung stellt sich ein etwas ausgeprägteres Optimum der Wärmeabfuhr bei 25 Vol.-%fl ein, für das sich axiale Wärmestromdichten zwischen ca. 33 W cm−2 und 38 W cm−2 und Wärmewiderstände zwischen ca. 0,7 K W−1 und 1,3 K W−1 ergeben. Da der fluidgebundene Wärmetransport im Innenvolumen der KSIK maßgeblich von der Strömung des zweiphasigen Kühlfluids abhängig ist, schließen sich an die Analyse der Wärmeabfuhr optische Messungen des Strömungsverhaltens einer Dampf-Wasser- sowie einer Luft-Wasser-Füllung mittels Hochgeschwindigkeitskamera an. Hierfür wurde eine optisch zugängliche Hohlstange mit nahezu gleichen Abmessungen, gleicher oszillierender Bewegung, aber ohne Wärmezu- und -abfuhr an den Stangenenden verwendet. Den Aufnahmen der Luft-Wasser-Füllungen ist zu entnehmen, dass sich die Strömung für alle untersuchten Drehzahlen und Flüssigvolumenanteile durch eine gemeinsame Struktur auszeichnet. Hierbei tritt die flüssige Phase stets in zwei hauptsächlichen Erscheinungsformen auf: Zum einen ein Teil am unteren Stangenende, der in der vorliegenden Arbeit als Sumpf bezeichnet wird. Und zum anderen ein zweiter Teil, der durch die oszillierende Stangenbewegung den Sumpf verlässt und sich als Wandfilm im Innenvolumen zunächst nach oben bewegt und nach Erreichen einer maximalen Höhe wieder nach unten zurückfließt. Dieser Teil erhält daher die Bezeichnung Film. Die Bewegung der Luft im Stangeninneren ergibt sich im Wesentlichen durch die Verdrängung der Flüssigkeit. Die Strömung von Sumpf und Film kann auf der Basis vereinfachender geometrischer Annahmen mithilfe von drei zeitabhängigen, charakteristischen Strömungsparametern beschrieben werden: Der Sumpfhöhe, der Filmhöhe sowie der Filmdicke. Diese wurden für verschiedene Füllmengen zwischen 10 Vol.-%fl und 40 Vol.-%fl und im Drehzahlbereich zwischen 300 min−1 und 600 min−1 quantifiziert. Es zeigt sich, dass das Wärmetransportverhalten und die Strömung einer Luft-Wasser-Füllung eng gekoppelt sind und sich die Ergebnisse der optischen Untersuchung bei der Interpretation des thermodynamischen Verhaltens als hilfreich erweisen. Beispielsweise offenbaren sie die Gründe für den optimalen Flüssigvolumenanteil von 25 Vol.-%fl. Darüber hinaus wurde auch die Strömung verschiedener Dampf-Wasser-Füllungen untersucht, die in einigen wesentlichen Aspekten von den Ergebnissen mit Luft-Wasser-Füllung abweicht. Der wichtigste Unterschied zeigt sich in der Möglichkeit des Phasenwechsels zwischen flüssiger und gasförmiger Phase und vice versa, was bei einem Luft-Wasser-Gemisch in keiner Messung festgestellt werden konnte. Neben einer mutmaßlichen Verbesserung der Wärmeübergangskoeffizienten resultiert hieraus auch eine bessere Durchströmung des Innenvolumens sowie eine bessere Durchmischung der gasförmigen und flüssigen Phase, sodass nachvollziehbar wird, warum ein Dampf-Wasser-Gemisch eine bessere Wärmeabfuhr ermöglicht als mit Luft als zusätzlicher Komponente. Um die Berechnung der Strömung von Luft-Wasser-Füllungen in einer vertikal-oszillierenden Hohlstange für beliebige Konfigurationen zu ermöglichen, wurde ein Strömungsmodell entwickelt, mit dem die zeitlich abhängige Verteilung der flüssigen und gasförmigen Phase berechnet werden kann. Dabei sind u. a. die Drehzahl, der Flüssigvolumenanteil sowie der Innendurchmesser und die Länge der Hohlstange frei wählbar. Zur Beschreibung der Verteilung der flüssigen Phase wird die in den optischen Untersuchungen festgestellte Aufteilung in Sumpf- und Filmanteile für das Berechnungsmodell übernommen. Die Grundlage für die Berechnung der Strömung mittels Zeitschrittverfahrens stellt die Bewegungsgleichung für die Flüssigkeit in vertikaler Richtung unter Berücksichtigung verschiedener Beschleunigungsanteile dar, die die Filmbewegung hervorrufen. Die restlichen charakteristischen Strömungsparameter ergeben sich durch die Inkompressibilität der flüssigen Phase und durch die empirische Vorgabe der Filmdicke, sodass dadurch auch die zeitlich abhängige Verteilung des Sumpfs und der gasförmigen Phase ermittelt werden kann. Der Vergleich der Berechnungs- und Messergebnisse für die charakteristischen Strömungsparameter zeigt eine in den meisten Fällen zufriedenstellende Übereinstimmung und bestätigt die Herangehensweise und das Berechnungskonzept des Strömungsmodells.:1 Einleitung 2 Grundlagen der Kreuzkopfverdichter 3 Experimentelle Untersuchungen der Wärmeabfuhr 4 Experimentelle Untersuchungen der Strömung 5 Berechnungsmodell für die Strömung mit Luft-Wasser-Füllung 6 Zusammenfassung A Anhang
15

Effect Of Coriolis And Centrifugal Forces On Turbulence And Transport At High Rotation And Buoyancy Numbers

Sleiti, Ahmad Khalaf 01 January 2004 (has links)
This study attempts to understand one of the most fundamental and challenging problems in fluid flow and heat transfer for rotating machines. The study focuses on gas turbines and electric generators for high temperature and high energy density applications, respectively, both which employ rotating cooling channels so that materials do not fail under high temperature and high stress environment. Prediction of fluid flow and heat transfer inside internal cooling channels that rotate at high rotation number and high density ratio similar to those that are existing in turbine blades and generator rotors is the main focus of this study. Both smooth-wall and rib-roughened channels are considered here. Rotation, buoyancy, bends, ribs and boundary conditions affect the flow inside theses channels. Ribs are introduced inside internal cooling channel in order to enhance the heat transfer rate. The use of ribs causes rapid increase in the supply pressure, which is already limited in a turbine or a generator and requires high cost for manufacturing. Hence careful optimization is needed to justify the use of ribs. Increasing rotation number (Ro) is another approach to increase heat transfer rate to values that are comparable to those achieved by introduction of ribs. One objective of this research is to study and compare theses two approaches in order to decide the optimum range of application and a possible replacement of the high-cost and complex ribs by increasing Ro. A fully computational approach is employed in this study. On the basis of comparison between two-equation (k-[epsilon] and k-[omega]) and RSM turbulence models, against limited available experimental data, it is concluded that the two-equation turbulence models cannot predict the anisotropic turbulent flow field and heat transfer correctly, while RSM showed improved prediction. For the near wall region, two approaches with standard wall functions and enhanced near wall treatment were investigated. The enhanced near wall approach showed superior results to the standard wall functions approach. Thus RSM with enhanced near wall treatment is validated against available experimental data (which are primarily at low rotation and buoyancy numbers). The model was then used for cases with high Ro (as much as 1.29) and high-density ratios (DR) (up to 0.4). Particular attention is given to how turbulence intensity, Reynolds stresses and transport are affected by Coriolis and buoyancy/centrifugal forces caused by high levels of Ro and DR. Variations of flow total pressure along the rotating channel are also predicted. The results obtained are explained in view of physical interpretation of Coriolis and centrifugal forces. Investigation of channels with smooth and with rib-roughened walls that are rotating about an orthogonal axis showed that increasing Ro always enhances turbulence and the heat transfer rate, while at high Ro, increasing DR although causes higher turbulence activity but does not necessarily increase Nu and in some locations even decreases Nu. The increasing thermal boundary layer thickness near walls is the possible reason for this behavior of Nu. The heat transfer enhancement for smooth-wall cases correlates linearly with Ro (with other parameters are kept constant) and hence it is possible to derive linear correlation for the increase in Nu as a function of Ro. Investigation of channels with rib-roughened walls that rotate about orthogonal axis showed that 4-side-average Nur correlates with Ro linearly, where a linear correlation for Nur/Nus as a function of Ro is derived. It is also observed that the heat transfer rate on smooth-wall channel can be enhanced rapidly by increasing Ro to values that are comparable to the enhancement due to the introduction of ribs inside internal cooling channels. This observation suggests that ribs may be unnecessary in high-speed machines, and has tremendous implications for possible cost savings in these machines. In square channels that rotate about parallel axis, the heat transfer rate enhances with Ro on three surfaces of the square channel and decreases on the inner surface (that is the one closest to the axis of rotation). However, the four-sides average Nu increases with Ro. Increasing wall heat flux at high Ro does not necessarily increase Nu on walls although higher turbulence activity is observed. This study examines the rich interplay of physics under the simultaneous actions of Coriolis and centrifugal/buoyancy forces in one of the most challenging internal flow configurations. Several important conclusions are reached from this computational study that may have far-reaching implications on how turbine blades and generator rotors are currently designed. Since the computation study in not validated for high Ro cases, these important results call for a experimental investigation.
16

Heat Transfer Augmentation In A Narrow Rectangular Duct With Dimples Applied To A Single Wall

Slabaugh, Carson 01 January 2010 (has links)
Establishing a clean and renewable energy supply is the preeminent engineering challenge of our time. Turbines, in some form, are responsible for more than 98 percent of all electricity generated in the United State and 100 percent of commercial and military air transport. The operation of these engines is clearly responsible for significant consumption of hydrocarbon fuels and, in turn, emission of green house gases into the atmosphere. With such wide-scale implementation, it is understood that even the smallest increase in the operating efficiency of these machines can lead to enormous improvements over the current energy situation. These effects can extend from a reduction in the emission of greenhouse gases to lessening the nation's dependence of foreign energy sources to lower energy prices for the consumer. The prominent means of increasing engine efficiency is by raising the 'Turbine Inlet Temperature' ' the temperature of the mainstream flow after combustion, entering the first stage of the turbine section. The challenge is presented when these temperatures are forced beyond the allowable limits of the materials inside the machine. In order to protect these components, active cooling and protection methods are employed. The focus of this work is the development of more efficient means of cooling 'hot' turbine components. In doing so, the goal is to maximize the amount of heat removed by the coolant while minimizing the coolant mass flow rate: by removing a greater amount of heat with a lower coolant mass flow rate, more compressed air is left in the mainstream gas flow for combustion and power generation. This study is an investigation of the heat transfer augmentation through the fully-developed portion of a narrow rectangular duct (AR=2) characterized by the application of dimples to the bottom wall of the channel. Experimental testing and numerical modeling is performed for full support and validation of presented findings. The geometries are studied at channel Reynolds numbers of 20000, 30000, and 40000. The purpose is to understand the contribution of dimple geometries in the formation of flow structures that improve the advection of heat away from the channel walls. Experimental data reported includes the local and Nusselt number augmentation of the channel walls and the overall friction augmentation throughout the length of the duct. Computational results validate local Nusselt number results from experiments, in addition to providing further insight to local flow physics causing the observed surface phenomena. By contributing to a clearer understanding of the effects produced by these geometries, the development of more effective channel-cooling designs can be achieved.
17

Strongly-Coupled Conjugate Heat Transfer Investigation of Internal Cooling of Turbine Blades using the Immersed Boundary Method

Oh, Tae Kyung 02 July 2019 (has links)
The present thesis focuses on evaluating a conjugate heat transfer (CHT) simulation in a ribbed cooling passage with a fully developed flow assumption using LES with the immersed boundary method (IBM-LES-CHT). The IBM with the LES model (IBM-LES) and the IBM with CHT boundary condition (IBM-CHT) frameworks are validated prior to the main simulations by simulating purely convective heat transfer (iso-flux) in the ribbed duct, and a developing laminar boundary layer flow over a two-dimensional flat plate with heat conduction, respectively. For the main conjugate simulations, a ribbed duct geometry with a blockage ratio of 0.3 is simulated at a bulk Reynolds number of 10,000 with a conjugate boundary condition applied to the rib surface. The nominal Biot number is kept at 1, which is similar to the comparative experiment. As a means to overcome a large time scale disparity between the fluid and the solid regions, the use of a high artificial solid thermal diffusivity is compared to the physical diffusivity. It is shown that while the diffusivity impacts the instantaneous fluctuations in temperature, heat transfer and Nusselt numbers, it has an insignificantly small effect on the mean Nusselt number. The comparison between the IBM-LES-CHT and iso-flux simulations shows that the iso-flux case predicts higher local Nusselt numbers at the back face of the rib. Furthermore, the local Nusselt number augmentation ratio (EF) predicted by IBM-LES-CHT is compared to the body fitted grid (BFG) simulation, experiment and another LES conjugate simulation. Even though there is a mismatch between IBM-LES-CHT prediction and other studies at the front face of the rib, the area-averaged EF compares reasonably well in other regions between IBM-LES-CHT prediction and the comparative studies. / Master of Science / The present thesis focuses on the computational study of the conjugate heat transfer (CHT) investigation on the turbine internal ribbed cooling channel. Plenty of prior research on turbine internal cooling channel have been conducted by considering only the convective heat transfer at the wall, which assumes an iso-flux (constant heat flux) boundary condition at the surface. However, applying an iso-flux condition on the surface is far from the realistic heat transfer mechanism occurring in internal cooling systems. In this work, a conjugate heat transfer analysis of the cooling channel, which considers both the conduction within the solid wall and the convection at the ribbed inner wall surface, is conducted for more realistic heat transfer coefficient prediction at the inner ribbed wall. For the simulation, the computational mesh is generated by the immersed boundary method (IBM), which can ease the mesh generation by simply immersing the CAD geometry into the background volume grid. The IBM is combined with the conjugate boundary condition to simulate the internal ribbed cooling channel. The conjugate simulation is compared with the experimental data and another computational study for the validation. Even though there are some discrepancy between the IBM simulation and other comparative studies, overall results are in good agreement. From the thermal prediction comparison between the iso-flux case and the conjugate case v using the IBM, it is found that the heat transfer predicted by the conjugate case is different from the iso-flux case by more than 40 percent at the rib back face. The present study shows the potential of the IBM framework with the conjugate boundary condition for more complicated geometry, such as full turbine blade model with external and internal cooling system.
18

Detached Eddy Simulation of Turbulent Flow and Heat Transfer in Turbine Blade Internal Cooling Ducts

Viswanathan, Aroon Kumar 08 September 2006 (has links)
Detached Eddy Simulations (DES) is a hybrid URANS-LES technique that was proposed to obtain computationally feasible solutions of high Reynolds number flows undergoing massive separation with reliable accuracy. Since its inception, DES has been applied to a wide variety of flow fields, but mostly limited to unbounded external aerodynamic flows. This is the first study to apply and validate DES to predict the internal flow and heat transfer in non-canonical flows of industrial relevance. The prediction capabilities of DES in capturing the effects of Coriolis forces, which are induced by rotation, and centrifugal buoyancy forces, which are induced by thermal gradients, are also authenticated. The accurate prediction of turbulent flows is sensitive to the level of turbulence predicted by the turbulence scheme. By treating the regions of interest in LES mode, DES allows the unsteadiness in these regions to develop and hence predicts the turbulence levels accurately. Additionally, this permits DES to capture the effects of system rotation and buoyancy. Computations on a rotating system (a sudden expansion duct) and a system subjected to thermal gradients (cavity with a heated wall) validate the prediction capability of DES. The application of DES is further extended to a non-canonical, internal flow which is of relevance in internal cooling of gas turbine blades. Computations of the fully developed flow and heat transfer shows that DES surpasses several shortcomings of the RANS model on which it is based. DES accurately predicts the primary and secondary flow features, the turbulence characteristics and the heat transfer in stationary ducts and in rotating ducts, where the effects of Coriolis forces and centrifugal buoyancy forces are dominant. DES computations are carried out at a computational cost that is almost an order of magnitude less than the LES with little compromise on the accuracy. However, the capabilities of DES in predicting the transition to turbulence are inadequate, as highlighted by the flow features and the heat transfer in the developing region of the duct. But once the flow becomes fully turbulent, DES predicts the flow physics and shows good quantitative agreement with the experiments and LES. / Ph. D.
19

Development of a Methodology to Measure Aerodynamic Forces on Pin Fins in Channel Flow

Brumbaugh, Scott J. 23 January 2006 (has links)
The desire for smaller, faster, and more efficient products places a strain on thermal management in components ranging from gas turbine blades to computers. Heat exchangers that utilize internal cooling flows have shown promise in both of these industries. Although pin fins are often placed in the cooling channels to augment heat transfer, their addition comes at the expense of increased pressure drop. Consequently, the pin fin geometry must be judiciously chosen to achieve the desired heat transfer rate while minimizing the pressure drop and accompanying pumping requirements. This project culminates in the construction of a new test facility and the development of a unique force measurement methodology. Direct force measurement is achieved with a cantilever beam force sensor that uses sensitive piezoresistive strain gauges to simultaneously measure aerodynamic lift and drag forces on a pin fin. After eliminating the detrimental environmental influences, forces as small as one-tenth the weight of a paper clip are successfully measured. Although the drag of an infinitely long cylinder in uniform cross flow is well documented, the literature does not discuss the aerodynamic forces on a cylinder with an aspect ratio of unity in channel flow. Measured results indicate that the drag coefficient of a cylindrical pin in a single row array is greater than the drag coefficient of an infinite cylinder in cross flow. This phenomenon is believed to be caused by an augmentation of viscous drag on the pin fin induced by the increased viscous effects inherent in channel flow. / Master of Science
20

Heat Transfer from Multiple Row Arrays of Low Aspect Ratio Pin Fins

Lawson, Seth Augustus 22 February 2007 (has links)
The heat transfer characteristics through arrays of pin fins were studied for the further development of internal cooling methods for turbine airfoils. Low aspect ratio pin fin arrays were tested through a range of Reynolds numbers between 5000 and 30,000 to determine the effects of pin spacing as well as aspect ratio on pin and endwall heat transfer. Experiments were also conducted to determine the independent effects of pin spacing and aspect ratio on arrays with different flow incidence angles. The pin Nusselt numbers showed almost no dependence on pin spacing or flow incidence angle. Using an infrared thermogaphy technique, spatially-resolved Nusselt numbers were measured along the endwalls of each array. The endwall results showed that streamwise spacing had a larger effect than spanwise spacing on array-averaged Nusselt numbers. Endwall heat transfer patterns showed that arrays with flow incidence angles experienced less wake interaction between pins than arrays with perpendicular flow, which caused a slight decrease in heat transfer in arrays with flow incidence angles. The effect of flow incidence angle on array-average Nusselt number was greater at tighter pin spacings. Even though the pin Nusselt number was independent of pin spacing, the ratio of pin-to-endwall Nusselt number was dependent on flow conditions as well as pin spacing. The pin aspect ratio had little effect on the array-average Nusselt number for arrays with perpendicular flow; however, the effect of flow incidence angle on array-average Nusselt number increased as aspect ratio decreased. / Master of Science

Page generated in 0.0918 seconds