Spelling suggestions: "subject:"interpolation dde carleson"" "subject:"interpolation dde charleson""
1 |
Constrained interpolation on nite subsets of the disc / Interpolation avec contraintes sur des ensembles finis du disqueZarouf, rachid 08 December 2008 (has links)
La thèse est consacrée à une étude d'interpolation complexe "semi-libre" dans le sens suivant: étant donné un ensemble "sigma" dans le disque unité D et une fonction f holomorphe dans D appartenant à une certaine classe X, on cherche g dans une autre classe Y (plus petite que X) qui minimise la norme de g dans Y parmi toutes les fonctions g satisfaisant g=f sur l'ensemble "sigma". Plus précisément, nous nous intéressons aux estimations de la constante d'interpolation suivante: c(sigma, X, Y ) = sup{ inf{||g||_Y: g=f sur sigma}: ||f||_X<=1} Dans la thèse, nous étudions le cas où Y = H^infini et où l'espace des contraintes X est choisi parmi les espaces suivants: les espaces de Hardy, les espaces de Bergman pondérés à poids radial ou encore les espaces de fonctions holomorphes ayant leurs coefficients de Taylor dans lp(w) (w étant un poids). La thèse contient également certaines applications aux nombres conditionnés des matrices de Toeplitz. / The thesis is devoted to a "semi-free" interpolation problem in the following way. Let sigma be a finite set of the unit disc D and f an holomorphic function in D which belongs to a certain class X, we search for g in another class Y (smaller than X) which minimize the norm of g in Y among all the functions g such that g=f on the set "sigma". More precisely, we are interested in the following interpolation constant : c(sigma, X, Y ) = sup{ inf{||g||_Y: g=f sur sigma}: ||f||_X<=1}. We study in the thesis the case where Y=H^\infinity and the space of constrains X is chosen among the following spaces: Hardy spaces, weighted Bergman spaces (with radial waights), and holomorphic functions which Taylor coefficients are in lp(w) (w being a weight). The thesis also contains an application to the condition numbers of Toeplitz matrices.
|
Page generated in 0.1014 seconds