Spelling suggestions: "subject:"interstellar medium"" "subject:"interstellare medium""
41 |
Deriving Dust Properties in Star Forming Clumps: a Look Across the Perseus Molecular Cloud with Herschel and SCUBA-2Chen, Michael Chun-Yuan 22 April 2015 (has links)
Herschel and JCMT surveys of nearby star-forming regions have provided excellent images of cold dust emission across several wavelengths with unprecedented dynamic range and resolutions. Here we present spectral emissivity index and temperature maps of dust in the star-forming clumps of the Perseus molecular cloud determined from fitting SEDs to the combined Herschel and JCMT observations in the 160 μm, 250 μm, 350 μm, 500 μm, and 850 μm bands, employing the technique developed by Sadavoy et al. (2013). In NGC1333, the most complex and active star-forming clump in Perseus, we demonstrate that CO line contamination in the JCMT SCUBA-2 850 μm band is typically insignificant. The derived spectral emissivity index, β, and dust temperature, T, ranges between 0.8 - 3.0 and 7 - 50 K, respectively. Throughout Perseus, we see indications of heating from B stars and embedded protostars, and smooth β variations on the smaller scales. The distribution of β values seen in each clump differs from one clump to another, and is in general different from the diffuse ISM values (i.e., ~2), suggesting that dust grain evolution is significant in star-forming clumps. We also found coincidences between low β regions and local temperature peaks as well as locations of outflows, which may provide hints to the origins of these low β value grains, and dust grain evolution in star-forming clumps in general. / Graduate / mcychen@uvic.ca
|
42 |
Using hydrogen energetic neutral atoms to study the heliosphereKornbleuth, Marc Zachary 07 February 2021 (has links)
The interaction between the solar wind and the partially ionized gas of the local interstellar medium (ISM) creates a bubble known as the heliosphere. Classically, the shape of the heliosphere has been regarded as comet-like, with a long tail pointed in the direction opposite the Sun’s motion through the ISM. In this view, the solar magnetic field was assumed to have a negligible effect on the global structure of the heliosphere. Recent advances in numerical modeling have revealed the importance of the solar magnetic field in its ability to confine and collimate the solar wind plasma, and the shape of the heliosphere has been called into question. Energetic neutral atoms (ENAs) are created throughout the heliosphere via charge exchange. The separate contributions of the solar magnetic field topology and the solar wind structure to ENA observations is largely unexplored. The Interstellar Boundary Explorer (IBEX) has been providing a global perspective of the heliosphere through ENA maps with energies ranging from 0.2 to 6 keV.
In this dissertation, three-dimensional magnetohydrodynamic simulations of the heliosphere are used as input to an ENA model designed to produce synthetic ENA maps. I compare modeled ENA maps with IBEX observations to investigate how different heliospheric conditions and properties affect ENAs created in the heliosphere, and therefore how ENA observations can be used to understand the heliosphere. First, I investigate the effect of the solar wind collimation by the solar magnetic field on ENA maps in the case of a solar wind without latitudinal variation. I find that even in the absence of variations of the solar wind, two lobes of strong ENA flux form at high latitudes, similar to what is observed by IBEX at high energies. Second, I test the effect of a latitudinally-varying solar wind on ENAs both with and without the inclusion of the solar magnetic field. I show that the latitudinal variations of the solar wind during solar minimum creates a structured ENA profile with latitude, corresponding to the profile observed at 1 AU, but that the solar magnetic field significantly enhances ENA flux in the region where the solar wind is confined. Lastly, I investigate the effect of the solar cycle on ENAs and how changing solar wind conditions (e.g. density, temperature, velocity) affect the heliosphere over time. I demonstrate that, given changes in the solar cycle, there is a significant evolution in the modeled ENA flux due to the changes in the solar wind profile and the solar magnetic field, which is also seen by ENA observations.
|
43 |
Isomers of ions in space and planetary atmospheresSundelin, David January 2022 (has links)
Ion chemistry has become increasingly important in the evolution of the chemical inventory of extraterrestrial environments. Isomers of ions have also come to play an important role as, in many instances, the cold environments in the interstellar medium and high layers of planet and satellite atmospheres do not supply enough energy to overcome isomerization barriers and the isomers effectively act as separate molecules. In this licentiate thesis, several studies of the [CH3N]+ isomers are presented. Reactivity studies of the two isomers, the methanimine radical cation (H2CNH+) and aminomethylene (HCNH2+) with hydrocarbons C2H4, C2H2 and CH4, and IRPD spectroscopy of both species have been performed. Complimentary ab initio calculations aid in the determination of formation pathways of observed product channels and in the assignment of the vibrational bands seen in the IRPD spectrum. The results show that reaction pathways of the two isomers generally involve adduct formation followed by hydrogen ejection where the product or pathway is dependent on the ingoing reactant isomer. The IRPD spectrum allows identification of the different isomers via vibrational transitions. Isomer generation by electron ionization favours methanimine cation production with an abundance of 70% while with VUV photoionization it is possible to selectively produce isomers. It is concluded that isomerism must be considered when investigating the chemical environment of interstellar objects.
|
44 |
Study of Interstellar Medium in Star-Forming Galaxies at the Violent Epoch of Galaxy Evolution / 銀河進化の激動期における星形成銀河の星間物質の研究Seko, Akifumi 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20180号 / 理博第4265号 / 新制||理||1613(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 太田 耕司, 准教授 栗田 光樹夫, 教授 長田 哲也 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
45 |
Simulating Systematic Errors in Exoplanetary Transits for the James Webb Space TelescopeWright, David C, III 01 January 2021 (has links)
The James Webb Space Telescope (JWST) is a next-generation space telescope that will be capable of making transformative observations of planetary transits. As its launch date grows ever closer, it becomes imperative that astronomers have access to accurate simulations of JWST observations in order to best plan observations and devise data analysis pipelines. Unfortunately, available simulation tools do not provide the most accurate or realistic simulations, including noise and systematic errors. In this thesis, I present an open-source time-domain simulator of planetary transits that is capable of accurately modeling these effects in observations made by JWST.
|
46 |
Molecular Clouds Across the Local Star-forming Galaxy PopulationSun, Jiayi January 2021 (has links)
No description available.
|
47 |
Processing of Simulated and Experimental Images of Closely Spaced Binary Stars Using Speckle InterferometrySmidth, Niels 01 June 2016 (has links) (PDF)
Theory and methods of processing speckle interferometry data from close visual binary stars are presented and implemented. The effects of the optical systems used for observing close visual binary stars are explained and simulated from both the geometrical and physical optical viewpoints. The atmospheric phase distortion and shot noise responsible for the observed speckle patterns are simulated. The deconvolution technique originally presented by Labeyrie is implemented to extract astrometric data from close visual binary stars. This method is applied to both simulated and experimental data from Kitt Peak National Observatory as validation. Parts of the deconvolution process are optimized to allow for near real time calculations in an automated observatory.
|
48 |
Properties of Bulgeless Disk Galaxies: Atomic Gas and Star FormationWatson, Linda Ceva 20 October 2011 (has links)
No description available.
|
49 |
An ALMA Archival Study of the Clump Mass Function in the Large Magellanic CloudBrunetti, Nathan January 2017 (has links)
This thesis presents 1.3 mm and 3.1 mm continuum maps of seven star forming regions within the Large Magellanic Cloud (LMC) as observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). The data were taken as part of six projects retrieved from the ALMA public archive plus one project observed specifically for this work. We developed a technique to combine Band 3 and Band 6 maps to estimate dust-only emission corrected for free-free emission contamination. We also present an automated \texttt{clean} masking script, with a listing of the code, which we adapted and used for all of the imaging in this thesis. From these observations we identify 32 molecular clumps in the LMC and estimate their total mass from their dust emission. We derive a cumulative clump mass function ($N(\geq M) \propto M^{\alpha+1}$) and fit it with a double power law to find $\alpha_{\mathrm{low}} = -1.76^{+0.07}_{-0.1}$, $\alpha_{\mathrm{high}} = -3.3^{+0.3}_{-0.6}$, and a break mass of $2500^{+700}_{-300}$ M$_{\odot}$. Comparing to the clump mass function derived by Indebetouw et al. (2013) from carbon monoxide spectral line emission for 30 Doradus-10 shows a consistent mass range of clumps between 205 $\mathrm{M}_{\odot}$ and 5740 $\mathrm{M}_{\odot}$ as well as consistency between their single power law fit and our low mass power law index. Also comparing to core and clump mass functions from several star forming regions in the Milky Way we find consistency between most of their high mass indices and our low mass index, which is where the clump mass ranges overlap. / Thesis / Master of Science (MSc)
|
50 |
Rejuvenating & Quenching: Gas Properties of Transitional GalaxiesLazarus, Dylan January 2023 (has links)
Most galaxies are either actively forming stars or quenched, but there is a small number of galaxies in transition from one population to the other. These galaxies are "quenching" if they are in the process of becoming quenched or "rejuvenating" if they are returning to the star-forming main sequence after a period of being quenched. Quenching occurs when a galaxy’s limited cold gas supply is heated or removed, halting star formation, while rejuvenation refers to any process that reintroduces cold gas to quenched galaxies, reigniting star formation. Rejuvenating galaxies, which are significantly rarer and less well-studied than quenching galaxies, can offer valuable insights into galaxy evolution processes. This thesis investigates the properties of transitional galaxies, with a focus on their gas content, to explore the mechanisms driving quenching and rejuvenation. We employ a recent classification method using GALEX NUV and Sloan Digital Sky Survey H-alpha measurements to identify transitional galaxies and analyze the derived gas properties of those in the xGASS and xCOLD GASS surveys. We find that rejuvenating and quenching galaxies have intermediate gas fractions compared to actively star-forming and quenched galaxies, and that rejuvenating and quenching galaxies have similar depletion times to star-forming and quenched galaxies, respectively. We also find that the rejuvenating population, particularly at lower stellar mass, is efficient at converting its atomic gas supply to molecular hydrogen, which could be attributed to their high gas-phase metallicities at low stellar mass. / Thesis / Master of Science (MSc)
|
Page generated in 0.0779 seconds