• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A-Implicações Fuzzy Valoradas Intervalarmente / A-FUZZY IMPLICATIONS VALUED INTERVALARMENTE

Dias, Marília do Amaral 20 April 2011 (has links)
Made available in DSpace on 2016-03-22T17:26:43Z (GMT). No. of bitstreams: 1 marilia.pdf: 1002551 bytes, checksum: 1472f2853b044a1ac45b6b20cb05f4be (MD5) Previous issue date: 2011-04-20 / In fuzzy logic, the interval valued fuzzy propositions can be combined using different aggregations (interval t-norms, interval t-conorms) and interval negations, generating new interval implications. The interval extension of fuzzy sets plays a crucial role in providing the foundation for the development of inference rules in expert systems based on interval valued fuzzy logic. Most fuzzy implication operators and their corresponding interval extensions are based on two types of representations: (i) the explicit representations defined in terms of aggregation operators,such as the classes of S-implications, QL-implications and D-implications; and (ii) implicit representations, considering forinstance R-implications. However, some fuzzy implication operations often applied in expert systems can not be classified in one of these two representations. In this new class of implications, referred to as A-implications, the relations with the aggregation operators are axiomatically defined based on algebraic properties. Therefore, to describe an interval extension of these operators, this study focuses on Yager s implications, Gh funtions and related properties of interval valued fuzzy implications, which can not be naturally represented explicitly or implicitly. Based on such study, this work introduces the canonical interval representation of the Yager s implications and Gh implication. In addition, it includes an analysis of the action of interval automorphisms on the class of interval valued A-implications and related algebraic properties which are verified by this interval constructions / Na l´ogica fuzzy, as proposic¸ oes fuzzy valoradas intervalarmente podem ser combinadas utilizando-se diferentes operadores de agregac¸ ao (t-normas intervalares, t-conormas intervalares) e o complemento intervalar, gerando novos operadores de implicac¸ oes intervalares. Na extens ao intervalar dos conjuntos fuzzy, as implicac¸ oes fuzzy intervalares t em um papel fundamental fornecendo a fundamentac¸ ao para o desenvolvimento das regras de infer encias em sistemas especialistas baseados na l´ogica fuzzy intervalar. Para a an´alise de propriedades alg´ebricas, a maioria dos operadores de implicac¸ oes fuzzy e suas correspondentes extens oes intervalares, est ao baseados em duas formas de representac¸ ao: (i) expl´ıcita, definida em termos dos operadores de agregac¸ ao, como verificam-se nas classes de S-implicac¸ oes, QL-implicac¸ oes e D-implicac¸ oes; ou, ainda (ii) impl´ıcita, como as Rimplicac ¸ oes. No entanto, algumas operac¸ oes de implicac¸ ao fuzzy frequentemente aplicadas em sistemas especialistas n ao se enquadram em uma destas formas de representac¸ ao. Esta nova classe de implicac¸ ao ´e referenciada como A-implicac¸ oes, onde as relac¸ oes com os operadores de agregac¸ ao s ao definidas a partir de uma axiomatizac¸ ao baseada em propriedades alg´ebricas. Portanto, para descrever a extens ao intervalar destes operadores, neste trabalho estuda-se a axiomatizac¸ ao das implicac¸ oes de Yager e da Gh-implicac¸ ao. Com base em tal estudo, este trabalho introduz a representac¸ ao can onica intervalar das implicac¸ oes de Yager e Gh-implicac¸ ao. Al´em disso, inclui uma an´alise da ac¸ ao de automorfismos intervalares sobre estas classes de A-implicac¸ oes valoradas intervalarmente relacionando as propriedades alg´ebricas que s ao verificadas por estas construc¸ oes intervalares

Page generated in 0.1398 seconds