Spelling suggestions: "subject:"interval fuzzy amplication"" "subject:"interval fuzzy emplication""
1 |
A-Implicações Fuzzy Valoradas Intervalarmente / A-FUZZY IMPLICATIONS VALUED INTERVALARMENTEDias, Marília do Amaral 20 April 2011 (has links)
Made available in DSpace on 2016-03-22T17:26:43Z (GMT). No. of bitstreams: 1
marilia.pdf: 1002551 bytes, checksum: 1472f2853b044a1ac45b6b20cb05f4be (MD5)
Previous issue date: 2011-04-20 / In fuzzy logic, the interval valued fuzzy propositions can be combined using different
aggregations (interval t-norms, interval t-conorms) and interval negations, generating
new interval implications. The interval extension of fuzzy sets plays a crucial role in
providing the foundation for the development of inference rules in expert systems based
on interval valued fuzzy logic. Most fuzzy implication operators and their corresponding
interval extensions are based on two types of representations: (i) the explicit representations
defined in terms of aggregation operators,such as the classes of S-implications,
QL-implications and D-implications; and (ii) implicit representations, considering forinstance
R-implications. However, some fuzzy implication operations often applied in expert
systems can not be classified in one of these two representations. In this new class of
implications, referred to as A-implications, the relations with the aggregation operators
are axiomatically defined based on algebraic properties. Therefore, to describe an interval
extension of these operators, this study focuses on Yager s implications, Gh funtions
and related properties of interval valued fuzzy implications, which can not be naturally
represented explicitly or implicitly.
Based on such study, this work introduces the canonical interval representation
of the Yager s implications and Gh implication. In addition, it includes an analysis of
the action of interval automorphisms on the class of interval valued A-implications and
related algebraic properties which are verified by this interval constructions / Na l´ogica fuzzy, as proposic¸ oes fuzzy valoradas intervalarmente podem ser combinadas
utilizando-se diferentes operadores de agregac¸ ao (t-normas intervalares, t-conormas
intervalares) e o complemento intervalar, gerando novos operadores de implicac¸ oes intervalares.
Na extens ao intervalar dos conjuntos fuzzy, as implicac¸ oes fuzzy intervalares t em
um papel fundamental fornecendo a fundamentac¸ ao para o desenvolvimento das regras de
infer encias em sistemas especialistas baseados na l´ogica fuzzy intervalar. Para a an´alise
de propriedades alg´ebricas, a maioria dos operadores de implicac¸ oes fuzzy e suas correspondentes
extens oes intervalares, est ao baseados em duas formas de representac¸ ao: (i)
expl´ıcita, definida em termos dos operadores de agregac¸ ao, como verificam-se nas classes
de S-implicac¸ oes, QL-implicac¸ oes e D-implicac¸ oes; ou, ainda (ii) impl´ıcita, como as Rimplicac
¸ oes. No entanto, algumas operac¸ oes de implicac¸ ao fuzzy frequentemente aplicadas
em sistemas especialistas n ao se enquadram em uma destas formas de representac¸ ao.
Esta nova classe de implicac¸ ao ´e referenciada como A-implicac¸ oes, onde as relac¸ oes com
os operadores de agregac¸ ao s ao definidas a partir de uma axiomatizac¸ ao baseada em propriedades
alg´ebricas. Portanto, para descrever a extens ao intervalar destes operadores,
neste trabalho estuda-se a axiomatizac¸ ao das implicac¸ oes de Yager e da Gh-implicac¸ ao.
Com base em tal estudo, este trabalho introduz a representac¸ ao can onica intervalar
das implicac¸ oes de Yager e Gh-implicac¸ ao. Al´em disso, inclui uma an´alise da ac¸ ao
de automorfismos intervalares sobre estas classes de A-implicac¸ oes valoradas intervalarmente
relacionando as propriedades alg´ebricas que s ao verificadas por estas construc¸ oes
intervalares
|
Page generated in 0.1255 seconds