• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intraseasonal Variability Of The Northeast Indian Ocean Circulation In An Ocean Model

Senan, Retish 07 1900 (has links) (PDF)
No description available.
2

Scaling Characteristics Of Tropical Rainfall

Madhyastha, Karthik 07 1900 (has links) (PDF)
We study the space-time characteristics of global tropical rainfall. The data used is from the Tropical Rainfall Measuring Mission (TRMM) and spans the years 2000-2009. Using anomaly fields constructed by removing a single mean and by subtracting the climatology of the ten year dataset, we extract the dominant modes of variability of tropical rainfall from an Empirical Orthogonal Function (EOF) analysis. To our knowledge, this is the first attempt at applying the EOF formal-ism to high spatio-temporal resolution global tropical rainfall. Spatial patterns and temporal indices obtained from the EOF analysis with single annual mean removed show large scale patterns associated with the seasonal cycle. Even though the seasonal cycle is dominant, the principal component (PC) time series show fluctuations at subseasonal scales. When the climatological mean is removed, spatial patterns of the dominant modes resemble features associated with tropical intraseasonal variability (ISV). Correspondingly, the signature of a seasonal cycle is relatively suppressed, and the PCs have prominent fluctuations at subseasonal scales. The significance of the leading EOFs is demonstrated by means of a novel ratio plot of the variance captured by the leading EOFs to the variance in the data. This shows that, in regions of high variability (which go hand in hand with high rainfall), the EOF/PC pairs capture a fair amount of the variance (up to 20% for the first EOF/PC pair) in the data. We then pursue an EOF analysis of the finest data resolution available. In particular, we per-form a regional analysis (a global analysis is beyond our present computational resources) of the tropics with 0.25◦×0.25◦, 3-hourly data. The regions we focus on are the Indian region, the Maritime Continent and South America. The spatial patterns obtained reveal a rich hierarchical structure to the leading modes of variability in these regions. Similarly, the PCs associated with these leading spatial modes show variability all the way from 90 days to the diurnal scale. With the results from EOF analysis in hand, we quantify the multiscale spatio-temporal structures encountered in our study. In particular, we examine the power spectra of the PCs and EOFs. A robust feature of the space and time spectra is the distribution of energy or variance across a range of scales. On the temporal front, aside from a seasonal and diurnal peaks, the variance scales as a power-law from a few days to the 90 day period. Similarly, below the planetary scale, from approximately 5000 km to 200 km the spatial spectrum also follows a power-law. Therefore, when trying to understand the variability of tropical rainfall, all scales are important, and it is difficult to justify a focus on isolated space and time scales.
3

Space-Time Evolution of the Intraseasonal Variability in the Indian Summer Monsoon and its Association with Extreme Rainfall Events : Observations and GCM Simulations

Karmakar, Nirupam January 2016 (has links) (PDF)
In this thesis, we investigated modes of intraseasonal variability (ISV) observed in the Indian monsoon rainfall and how these modes modulate rainfall over India. We identified a decreasing trend in the intensity of low-frequency intraseasonal mode with increasing strength in synoptic variability over India. We also made an attempt to understand the reason for these observed trends using numerical simulations. In the first part of the thesis, satellite rainfall estimates are used to understand the spatiotem-poral structures of convection in the intraseasonal timescale and their intensity during boreal sum-mer over south Asia. Two dominant modes of variability with periodicities of 10–20-days (high-frequency) and 20–60-days (low-frequency) are found, with the latter strongly modulated by sea surface temperature. The 20–60-day mode shows northward propagation from the equatorial In-dian Ocean linked with eastward propagating modes of convective systems over the tropics. The 10–20-day mode shows a complex space-time structure with a northwestward propagating anoma-lous pattern emanating from the Indonesian coast. This pattern is found to be interacting with a structure emerging from higher latitudes propagating southeastwards. This could be related to ver-tical shear of zonal wind over northern India. The two modes exhibit variability in their intensity on the interannual time scale and contribute a significant amount to the daily rainfall variability in a season. The intensities of the 20–60-day and 10–20-day modes show significantly strong inverse and direct relationship, respectively, with the all-India June–September rainfall. This study also establishes that the probability of occurrence of substantial rainfall over central India increases significantly if the two intraseasonal modes simultaneously exhibit positive anomalies over the region. There also exists a phase-locking between the two modes. In the second part of the thesis, we investigated the changing nature of these intraseasonal modes over Indian region, and their association with extreme rainfall events using ground based observed rainfall. We found that the relative strength of the northward propagating 20–60-day mode has a significant decreasing trend during the past six decades, possibly attributed to the weakening of large-scale circulation in the region during monsoon. This reduction is compensated by a gain in synoptic-scale (3–9 days) variability. The decrease in the low-frequency ISV is associated with a significant decreasing trend in the percentage of extreme events during the active phase of the monsoon. However, this decrease is balanced by a significant increasing trend in the percentage of extreme events in break phase. We also find a significant rise in occurrence of extremes during early- and late-monsoon months, mainly over the eastern coastal regions of India. We do not observe any significant trend in the high-frequency ISV. In the last part of the thesis, we used numerical simulations to understand the observed changes in the ISV features. Using the atmospheric component of a global climate model (GCM), we have performed two experiments: control experiment (CE) and heating experiment (HE). The CE is the default simulation for 10 years. In HE, we prescribed heating in the atmosphere in such a way that it mimics the conditions for extreme rainfall events as observed over central India during June– September. Heating is prescribed primarily during the break phase of the 20–60-day mode. This basically increases the number of extremes, majority of which are in break phase. The design of the experiment reflects the observed current scenario of increased extreme events during breaks. We found that the increased extreme events in the HE decreased the intensity of the 20–60-day mode over the Indian region. This reduction is associated with a reduction of rainfall in active phase and increase in the length of break phase. A reduction in the seasonal mean over India is also observed. The reduction of active phase rainfall is linked with an increased stability of the atmosphere over central India. Lastly, we propose a possible mechanism for the reduction of rainfall in active phase. We found that there is a significant reduction in the strength of the vertical easterly shear over the northern Indian region during break–active transition phase. This basically weakens the conditions for the growth of Rossby wave instability, thereby elongating break phase and reducing the rainfall intensity in the following active phase. This study highlights the redistribution of rainfall intensity among periodic (low-frequency) and non-periodic (extreme) modes in a changing climate scenario, which is further tested in a modeling study. The results presented in this thesis will provide a pathway to understand, using observations and numerical model simulations, the ISV and its relative contribution to the Indian summer monsoon. It can also be used for model evaluation.

Page generated in 0.0966 seconds