• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relative Timing of Intron Gain and a New Marker for Phylogenetic Analyses

Lehmann, Jörg 12 June 2014 (has links) (PDF)
Despite decades of effort by molecular systematists, the trees of life of eukaryotic organisms still remain partly unresolved or in conflict with each other. An ever increasing number of fully-sequenced genomes of various eukaryotes allows to consider gene and species phylogenies at genome-scale. However, such phylogenomics-based approaches also revealed that more taxa and more and more gene sequences are not the ultimate solution to fully resolve these conflicts, and that there is a need for sequence-independent phylogenetic meta-characters that are derived from genome sequences. Spliceosomal introns are characteristic features of eukaryotic nuclear genomes. The relatively rare changes of spliceosomal intron positions have already been used as genome-level markers, both for the estimation of intron evolution and phylogenies, however with variable success. In this thesis, a specific subset of these changes is introduced and established as a novel phylogenetic marker, termed near intron pair (NIP). These characters are inferred from homologous genes that contain mutually-exclusive intron presences at pairs of coding sequence (CDS) positions in close proximity. The idea that NIPs are powerful characters is based on the assumption that both very small exons and multiple intron gains at the same position are rare. To obtain sufficient numbers of NIP character data from genomic and alignment data sets in a consistent and flexible way, the implementation of a computational pipeline was a main goal of this work. Starting from orthologous (or more general: homologous) gene datasets comprising genomic sequences and corresponding CDS transcript annotations, the multiple alignment generation is an integral part of this pipeline. The alignment can be calculated at the amino acid level utilizing external tools (e.g. transAlign) and results in a codon alignment via back-translation. Guided by the multiple alignment, the positionally homologous intron positions should become apparent when mapped individually for each transcript. The pipeline proceeds at this stage to output portions of the intron-annotated alignment that contain at least one candidate of a NIP character. In a subsequent pipeline script, these collected so-called NIP region files are finally converted to binary state characters representing valid NIPs in dependence of quality filter constraints concerning, e.g., the amino acid alignment conservation around intron loci and splice sites, to name a few. The computational pipeline tools provide the researcher to elaborate on NIP character matrices that can be used for tree inference, e.g., using the maximum parsimony approach. In a first NIP-based application, the phylogenetic position of major orders of holometabolic insects (more specifically: the Coleoptera-Hymenoptera-Mecopterida trifurcation) was evaluated in a cladistic sense. As already suggested during a study on the eIF2gamma gene based on two NIP cases (Krauss et al. 2005), the genome-scale evaluation supported Hymenoptera as sister group to an assemblage of Coleoptera and Mecopterida, in agreement with other studies, but contradicting the previously established view. As part of the genome paper describing a new species of twisted-wing parasites (Strepsiptera), the NIP method was employed to help to resolve the phylogenetic position of them within (holometabolic) insects. Together with analyses of sequence patterns and a further meta-character, it revealed twisted-wing parasites as being the closest relatives of the mega-diverse beetles. NIP-based reconstructions of the metazoan tree covering a broad selection of representative animal species also identified some weaknesses of the NIP approach that may suffer e.g. from alignment/ortholog prediction artifacts (depending on the depth of range of taxa) and systematic biases (long branch attraction artifacts, due to unequal evolutionary rates of intron gain/loss and the use of the maximum parsimony method). In a further study, the identification of NIPs within the recently diverged genus Drosophila could be utilized to characterize recent intron gain events that apparently involved several cases of intron sliding and tandem exon duplication, albeit the mechanisms of gain for the majority of cases could not be elucidated. Finally, the NIP marker could be established as a novel phylogenetic marker, in particular dedicated to complementarily explore the wealth of genome data for phylogenetic purposes and to address open questions of intron evolution.
2

Relative Timing of Intron Gain and a New Marker for Phylogenetic Analyses

Lehmann, Jörg 12 February 2014 (has links)
Despite decades of effort by molecular systematists, the trees of life of eukaryotic organisms still remain partly unresolved or in conflict with each other. An ever increasing number of fully-sequenced genomes of various eukaryotes allows to consider gene and species phylogenies at genome-scale. However, such phylogenomics-based approaches also revealed that more taxa and more and more gene sequences are not the ultimate solution to fully resolve these conflicts, and that there is a need for sequence-independent phylogenetic meta-characters that are derived from genome sequences. Spliceosomal introns are characteristic features of eukaryotic nuclear genomes. The relatively rare changes of spliceosomal intron positions have already been used as genome-level markers, both for the estimation of intron evolution and phylogenies, however with variable success. In this thesis, a specific subset of these changes is introduced and established as a novel phylogenetic marker, termed near intron pair (NIP). These characters are inferred from homologous genes that contain mutually-exclusive intron presences at pairs of coding sequence (CDS) positions in close proximity. The idea that NIPs are powerful characters is based on the assumption that both very small exons and multiple intron gains at the same position are rare. To obtain sufficient numbers of NIP character data from genomic and alignment data sets in a consistent and flexible way, the implementation of a computational pipeline was a main goal of this work. Starting from orthologous (or more general: homologous) gene datasets comprising genomic sequences and corresponding CDS transcript annotations, the multiple alignment generation is an integral part of this pipeline. The alignment can be calculated at the amino acid level utilizing external tools (e.g. transAlign) and results in a codon alignment via back-translation. Guided by the multiple alignment, the positionally homologous intron positions should become apparent when mapped individually for each transcript. The pipeline proceeds at this stage to output portions of the intron-annotated alignment that contain at least one candidate of a NIP character. In a subsequent pipeline script, these collected so-called NIP region files are finally converted to binary state characters representing valid NIPs in dependence of quality filter constraints concerning, e.g., the amino acid alignment conservation around intron loci and splice sites, to name a few. The computational pipeline tools provide the researcher to elaborate on NIP character matrices that can be used for tree inference, e.g., using the maximum parsimony approach. In a first NIP-based application, the phylogenetic position of major orders of holometabolic insects (more specifically: the Coleoptera-Hymenoptera-Mecopterida trifurcation) was evaluated in a cladistic sense. As already suggested during a study on the eIF2gamma gene based on two NIP cases (Krauss et al. 2005), the genome-scale evaluation supported Hymenoptera as sister group to an assemblage of Coleoptera and Mecopterida, in agreement with other studies, but contradicting the previously established view. As part of the genome paper describing a new species of twisted-wing parasites (Strepsiptera), the NIP method was employed to help to resolve the phylogenetic position of them within (holometabolic) insects. Together with analyses of sequence patterns and a further meta-character, it revealed twisted-wing parasites as being the closest relatives of the mega-diverse beetles. NIP-based reconstructions of the metazoan tree covering a broad selection of representative animal species also identified some weaknesses of the NIP approach that may suffer e.g. from alignment/ortholog prediction artifacts (depending on the depth of range of taxa) and systematic biases (long branch attraction artifacts, due to unequal evolutionary rates of intron gain/loss and the use of the maximum parsimony method). In a further study, the identification of NIPs within the recently diverged genus Drosophila could be utilized to characterize recent intron gain events that apparently involved several cases of intron sliding and tandem exon duplication, albeit the mechanisms of gain for the majority of cases could not be elucidated. Finally, the NIP marker could be established as a novel phylogenetic marker, in particular dedicated to complementarily explore the wealth of genome data for phylogenetic purposes and to address open questions of intron evolution.
3

The relationship between orthology, protein domain architecture and protein function

Forslund, Kristoffer January 2011 (has links)
Lacking experimental data, protein function is often predicted from evolutionary and protein structure theory. Under the 'domain grammar' hypothesis the function of a protein follows from the domains it encodes. Under the 'orthology conjecture', orthologs, related through species formation, are expected to be more functionally similar than paralogs, which are homologs in the same or different species descended from a gene duplication event. However, these assumptions have not thus far been systematically evaluated. To test the 'domain grammar' hypothesis, we built models for predicting function from the domain combinations present in a protein, and demonstrated that multi-domain combinations imply functions that the individual domains do not. We also developed a novel gene-tree based method for reconstructing the evolutionary histories of domain architectures, to search for cases of architectures that have arisen multiple times in parallel, and found this to be more common than previously reported. To test the 'orthology conjecture', we first benchmarked methods for homology inference under the obfuscating influence of low-complexity regions, in order to improve the InParanoid orthology inference algorithm. InParanoid was then used to test the relative conservation of functionally relevant properties between orthologs and paralogs at various evolutionary distances, including intron positions, domain architectures, and Gene Ontology functional annotations. We found an increased conservation of domain architectures in orthologs relative to paralogs, in support of the 'orthology conjecture' and the 'domain grammar' hypotheses acting in tandem. However, equivalent analysis of Gene Ontology functional conservation yielded spurious results, which may be an artifact of species-specific annotation biases in functional annotation databases. I discuss possible ways of circumventing this bias so the 'orthology conjecture' can be tested more conclusively. / At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 6: Epub ahead of print.
4

Evolution and function of cellulase genes in Australian freshwater crayfish

Crawford, Allison Clare January 2006 (has links)
The most abundant organic compound produced by plants is cellulose, however it has long been accepted that animals do not secrete the hydrolytic enzymes required for its degradation, but rely instead on cellulases produced by symbiotic microbes. The recent discovery of an endogenous cDNA transcript encoding a putative GHF9 endoglucanase in the parastacid crayfish Cherax quadricarinatus (Byrne et al., 1999) suggests that similar cellulase genes may have been inherited by a range of crustacean taxa. In this study, the evolutionary history of the C. quadricarinatus endoglucanase gene and the presence of additional GHF9 genes in other decapod species were investigated. The activity of endoglucanase and endoxylanase enzymes within several cultured decapod species were also compared. The evolutionary history of the C. quadricarinatus endoglucanase gene was assessed by comparing intron/exon structure with that of other invertebrate and plant GHF9 genes. The coding region of the gene was found to be interrupted by eleven introns ranging in size from 102-902 bp, the position of which was largely conserved in both termite and abalone GHF9 genes. These structural similarities suggest GHF9 genes in crustaceans and other invertebrate taxa share a common ancestry. In addition, two introns were observed to share similar positions in plant GHF9 genes, which indicates this enzyme class may have been present in ancient eukaryote organisms. The presence of GHF9 genes in C. quadricarinatus and various other decapod species was then explored via degenerate primer PCR. Two distinct GHF9 gene fragments were determined for C. quadricarinatus and several other Cherax and Euastacus parastacid freshwater crayfish species, and a single GHF9 gene fragment was also determined for the palaemonid freshwater prawn Macrobrachium lar. Phylogenetic analyses of these fragments confirmed the presence of two endoglucanase genes within the Parastacidae, termed EG-1 and EG-2. The duplication event that produced these two genes appears to have occurred prior to the evolution of freshwater crayfish. In addition, EG-2 genes appear to have duplicated more recently within the Cherax lineage. The presence of multiple GHF9 endoglucanase enzymes within the digestive tract of some decapod species may enable more efficient processing of cellulose substrates present in dietary plant material. Endoglucanase and endoxylanase enzyme activities were compared in several parastacid crayfish and penaeid prawn species using dye-linked substrates. Endoglucanase activity levels were higher in crayfish compared with prawn species, which corresponds with the known dietary preferences of these taxa. Endoglucanase temperature and pH profiles were found to be very similar for all species examined, with optimum activity occurring at 60°C and pH 5.0. These results suggest endoglucanase activity in penaeid prawns may also be derived from endogenous sources. Additional in vitro studies further demonstrated crayfish and prawn species liberate comparable amounts of glucose from carboxymethyl-cellulose, which indicates both taxa may utilise cellulose substrates as a source of energy. Endoxylanase temperature and pH profiles were also similar for all crayfish species examined, with optimal activity occurring at 50°C and pH 5.0. These results suggest xylanase activity in crayfish may originate from endogenous enzymes, although it is unclear whether this activity is derived from GHF9 enzymes or a different xylanase enzyme class. In contrast, no endoxylanase activity was detected in the three prawn species examined. Together, these findings suggest a wide range of decapod crustacean species may possess endogenous GHF9 endoglucanase genes and enzymes. Endoglucanases may be secreted by various decapod species in order to digest soluble or amorphous cellulose substrates present in consumed plant material. Further biochemical studies may confirm the presence and functional attributes of additional endoglucanase genes and enzymes in decapods, which may ultimately assist in the design of optimal plant based crustacean aquaculture feeds.

Page generated in 0.0953 seconds