• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Représentations parcimonieuses pour les signaux multivariés / Sparse representations for multivariate signals

Barthelemy, Quentin 13 May 2013 (has links)
Dans cette thèse, nous étudions les méthodes d'approximation et d'apprentissage qui fournissent des représentations parcimonieuses. Ces méthodes permettent d'analyser des bases de données très redondantes à l'aide de dictionnaires d'atomes appris. Etant adaptés aux données étudiées, ils sont plus performants en qualité de représentation que les dictionnaires classiques dont les atomes sont définis analytiquement. Nous considérons plus particulièrement des signaux multivariés résultant de l'acquisition simultanée de plusieurs grandeurs, comme les signaux EEG ou les signaux de mouvements 2D et 3D. Nous étendons les méthodes de représentations parcimonieuses au modèle multivarié, pour prendre en compte les interactions entre les différentes composantes acquises simultanément. Ce modèle est plus flexible que l'habituel modèle multicanal qui impose une hypothèse de rang 1. Nous étudions des modèles de représentations invariantes : invariance par translation temporelle, invariance par rotation, etc. En ajoutant des degrés de liberté supplémentaires, chaque noyau est potentiellement démultiplié en une famille d'atomes, translatés à tous les échantillons, tournés dans toutes les orientations, etc. Ainsi, un dictionnaire de noyaux invariants génère un dictionnaire d'atomes très redondant, et donc idéal pour représenter les données étudiées redondantes. Toutes ces invariances nécessitent la mise en place de méthodes adaptées à ces modèles. L'invariance par translation temporelle est une propriété incontournable pour l'étude de signaux temporels ayant une variabilité temporelle naturelle. Dans le cas de l'invariance par rotation 2D et 3D, nous constatons l'efficacité de l'approche non-orientée sur celle orientée, même dans le cas où les données ne sont pas tournées. En effet, le modèle non-orienté permet de détecter les invariants des données et assure la robustesse à la rotation quand les données tournent. Nous constatons aussi la reproductibilité des décompositions parcimonieuses sur un dictionnaire appris. Cette propriété générative s'explique par le fait que l'apprentissage de dictionnaire est une généralisation des K-means. D'autre part, nos représentations possèdent de nombreuses invariances, ce qui est idéal pour faire de la classification. Nous étudions donc comment effectuer une classification adaptée au modèle d'invariance par translation, en utilisant des fonctions de groupement consistantes par translation. / In this thesis, we study approximation and learning methods which provide sparse representations. These methods allow to analyze very redundant data-bases thanks to learned atoms dictionaries. Being adapted to studied data, they are more efficient in representation quality than classical dictionaries with atoms defined analytically. We consider more particularly multivariate signals coming from the simultaneous acquisition of several quantities, as EEG signals or 2D and 3D motion signals. We extend sparse representation methods to the multivariate model, to take into account interactions between the different components acquired simultaneously. This model is more flexible that the common multichannel one which imposes a hypothesis of rank 1. We study models of invariant representations: invariance to temporal shift, invariance to rotation, etc. Adding supplementary degrees of freedom, each kernel is potentially replicated in an atoms family, translated at all samples, rotated at all orientations, etc. So, a dictionary of invariant kernels generates a very redundant atoms dictionary, thus ideal to represent the redundant studied data. All these invariances require methods adapted to these models. Temporal shift-invariance is an essential property for the study of temporal signals having a natural temporal variability. In the 2D and 3D rotation invariant case, we observe the efficiency of the non-oriented approach over the oriented one, even when data are not revolved. Indeed, the non-oriented model allows to detect data invariants and assures the robustness to rotation when data are revolved. We also observe the reproducibility of the sparse decompositions on a learned dictionary. This generative property is due to the fact that dictionary learning is a generalization of K-means. Moreover, our representations have many invariances that is ideal to make classification. We thus study how to perform a classification adapted to the shift-invariant model, using shift-consistent pooling functions.
2

Représentations parcimonieuses pour les signaux multivariés

Barthélemy, Quentin 13 May 2013 (has links) (PDF)
Dans cette thèse, nous étudions les méthodes d'approximation et d'apprentissage qui fournissent des représentations parcimonieuses. Ces méthodes permettent d'analyser des bases de données très redondantes à l'aide de dictionnaires d'atomes appris. Etant adaptés aux données étudiées, ils sont plus performants en qualité de représentation que les dictionnaires classiques dont les atomes sont définis analytiquement. Nous considérons plus particulièrement des signaux multivariés résultant de l'acquisition simultanée de plusieurs grandeurs, comme les signaux EEG ou les signaux de mouvements 2D et 3D. Nous étendons les méthodes de représentations parcimonieuses au modèle multivarié, pour prendre en compte les interactions entre les différentes composantes acquises simultanément. Ce modèle est plus flexible que l'habituel modèle multicanal qui impose une hypothèse de rang 1. Nous étudions des modèles de représentations invariantes : invariance par translation temporelle, invariance par rotation, etc. En ajoutant des degrés de liberté supplémentaires, chaque noyau est potentiellement démultiplié en une famille d'atomes, translatés à tous les échantillons, tournés dans toutes les orientations, etc. Ainsi, un dictionnaire de noyaux invariants génère un dictionnaire d'atomes très redondant, et donc idéal pour représenter les données étudiées redondantes. Toutes ces invariances nécessitent la mise en place de méthodes adaptées à ces modèles. L'invariance par translation temporelle est une propriété incontournable pour l'étude de signaux temporels ayant une variabilité temporelle naturelle. Dans le cas de l'invariance par rotation 2D et 3D, nous constatons l'efficacité de l'approche non-orientée sur celle orientée, même dans le cas où les données ne sont pas tournées. En effet, le modèle non-orienté permet de détecter les invariants des données et assure la robustesse à la rotation quand les données tournent. Nous constatons aussi la reproductibilité des décompositions parcimonieuses sur un dictionnaire appris. Cette propriété générative s'explique par le fait que l'apprentissage de dictionnaire est une généralisation des K-means. D'autre part, nos représentations possèdent de nombreuses invariances, ce qui est idéal pour faire de la classification. Nous étudions donc comment effectuer une classification adaptée au modèle d'invariance par translation, en utilisant des fonctions de groupement consistantes par translation.
3

Reconnaissance de formes basée géodésiques et déformations locales de formes / Shape recognition based on geodesics and local deformation of shapes

Merhy, Mayss'aa 29 June 2017 (has links)
Les performances d’un système de reconnaissance de formes dépendent en bonne partie de la qualité de l’image segmentée. Malgré les progrès effectués, une segmentation complète (c’est-à-dire avec des contours entiers) ne peut pas être toujours atteinte. Dans un premier temps, nous nous plaçons dans le cas où seulement certaines parties de la forme entière sont disponibles. D’abord, afin d’assurer l’invariance des parties de formes aux transformations géométriques, nous développons une méthode d’optimisation de l’analyse procustéenne qui consiste à retrouver les points extrémités optimaux qui minimisent la distance de Procutse. Ensuite, nous proposons une approche de reconnaissance de parties de formes et une approche de reconnaissance de formes partielles. Ces deux approches, basées-contour, sont fondées sur un recalage robuste entre les parties de formes. La méthode de recalage proposée consiste à optimiser une mesure de similarité basée sur les géodésiques dans l’espace de formes. Ainsi, nous exploitons le résidu du recalage pour définir une nouvelle métrique pour la reconnaissance de parties de formes. Puis, nous décrivons une stratégie de combinaison avec cette même métrique pour la reconnaissance de formes partielles. Par la suite, nous proposons d’utiliser la distance géodésique proposée pour la reconnaissance des parties de formes dans la définition d’une métrique globale pour la reconnaissance de formes entières. Les tests de reconnaissance (classification et recherche) sont effectués sur des parties requêtes et des formes entières de la base d’images MPEG-7, puis sur des images réelles segmentées. Les résultats expérimentaux montrent la supériorité de nos méthodes par rapport aux autres méthodes de l’état de l’art. / The quality of the segmentation process directly affects the performance of the shape recognition. Despite the progress that has been made, it is often unreachable to segment the entire object (i.e. closed contour). In fact, only some parts/fragments of objects can be detected. We first develop a new alignment method based on Procrustes analysis in order to ensure invariance of shape parts to geometric transformations (translation, rotation and scale factor). The proposed method consists in finding optimal extremities which minimize the Procrustes distance. Then, we propose a shape part recognition approach and a partial shape recognition approach. These two contour-based approaches are based on matching between shape parts to compare. This matching process consists in establishing a robust registration between shape parts based on geodesics in the shape space. Thus, we exploit the registration residual to define a novel distance for shape part recognition. Later, for partial shape recognition, we describe a geodesics-based combining strategy with the same distance. As well, we propose to use the geodesics distance proposed for shape part recognition to define a global distance for entire shape recognition. Experiments are carried out on parts of shapes and entire shapes of theMPEG-7 database, then on parts issued from segmented real images. The obtained results demonstrate the effectiveness of our proposed recognition schemes. The proposed approaches are shown to significantly outperform previous works for classification and retrieval applications.
4

On Higher Order Graph Representation Learning

Balasubramaniam Srinivasan (12463038) 26 April 2022 (has links)
<p>Research on graph representation learning (GRL) has made major strides over the past decade, with widespread applications in domains such as e-commerce, personalization, fraud & abuse, life sciences, and social network analysis. Despite its widespread success, fundamental questions on practices employed in modern day GRL have remained unanswered. Unraveling and advancing two such fundamental questions on the practices in modern day GRL forms the overarching theme of my thesis.</p> <p>The first part of my thesis deals with the mathematical foundations of GRL. GRL is used to solve tasks such as node classification, link prediction, clustering, graph classification, and so on, albeit with seemingly different frameworks (e.g. Graph neural networks for node/graph classification, (implicit) matrix factorization for link prediction/ clustering, etc.). The existence of very distinct frameworks for different graph tasks has puzzled researchers and practitioners alike. In my thesis, using group theory, I provide a theoretical blueprint that connects these seemingly different frameworks, bridging methods like matrix factorization and graph neural networks. With this renewed understanding, I then provide guidelines to better realize the full capabilities of these methods in a multitude of tasks.</p> <p>The second part of my thesis deals with cases where modeling real-world objects as a graph is an oversimplified description of the underlying data. Specifically, I look at two such objects (i) modeling hypergraphs (where edges encompass two or more vertices) and (ii) using GRL for predicting protein properties. Towards (i) hypergraphs, I develop a hypergraph neural network which takes advantage of the inherent sparsity of real world hypergraphs, without unduly sacrificing on its ability to distinguish non isomorphic hypergraphs. The designed hypergraph neural network is then leveraged to learn expressive representations of hyperedges for two tasks, namely hyperedge classification and hyperedge expansion. Experiments show that using our network results in improved performance over the current approach of converting the hypergraph into a dyadic graph and using (dyadic) GRL frameworks. Towards (ii) proteins, I introduce the concept of conditional invariances and leverage it to model the inherent flexibility present in proteins. Using conditional invariances, I provide a new framework for GRL which can capture protein-dependent conformations and ensures that all viable conformers of a protein obtain the same representation. Experiments show that endowing existing GRL models with my framework shows noticeable improvements on multiple different protein datasets and tasks.</p>

Page generated in 0.0348 seconds