Spelling suggestions: "subject:"invariant cardinal."" "subject:"envariant cardinal.""
1 |
Generalizações do teorema de representação de Riesz / Generalizations of the Riesz Representation TheoremBatista, Cesar Adriano 19 June 2009 (has links)
Dados um espaço de medida (X;A;m) e números reais p,q>1 com 1/p+1/q=1, o Teorema de Representação de Riesz afirma que Lq(X;A;m) é o dual topológico de Lp(X;A;m) e que Loo(X;A; m) é o dual topológico de L1(X;A;m) se o espaço (X;A;m) for sigma-finito. Observamos que a sigma-finitude de (X;A;m) é condição suficiente mas não necessária para que Loo(X;A;m) seja o dual de L1(X;A;m). Os contra-exemplos tipicamente apresentados para essa última identificação são \"triviais\", no sentido de que desaparecem se \"consertarmos\" a medida , transformando-a numa medida perfeita. Neste trabalho apresentamos condições sufcientes mais fracas que sigma-finitude a fim de que Loo(X;A;m) e o dual de L1(X;A;m) possam ser isometricamente identificados. Além disso, introduzimos um invariante cardinal para espaços de medida que chamaremos a dimensão do espaço e mostramos que se o espaço (X;A;m) for de medida perfeita e tiver dimensão menor ou igual à cardinalidade do continuum então uma condição necessária e suficiente para Loo(X;A;m) seja o dual de L1(X;A;m) é que X admita uma decomposição. / Given a measure space (X;A;m) and real numbers p,q>1 with 1/p+1/q=1, the Riesz Representation Theorem states that Lq(X;A;m) is the topological dual space of Lp(X;A;m) and that Loo(X;A; m) is the topological dual space of L1(X;A;m) if (X;A; m) is sigma-finite. We observe that the sigma-finiteness of (X;A;m) is a suficient but not necessary condition for Loo(X;A;m) to be the dual of L1(X;A;m). The counter-examples that are typically presented for Loo(X;A;m) = L1(X;A;m)* are \"trivial\", in the sense that they vanish if we fix the measure , making it into a perfect measure. In this work we present suficient conditions weaker than sigma-finiteness in order that Loo(X;A; m) and L1(X;A;m)* can be isometrically identified. Moreover, we introduce a cardinal invariant for measure spaces which we call the dimension of the space and we show that if the space (X;A;m) has perfect measure and dimension less than or equal to the cardinal of the continuum then a necessary and suficient condition for Loo(X;A;m) = L1(X;A;m)* is that X admits a decomposition.
|
2 |
Generalizações do teorema de representação de Riesz / Generalizations of the Riesz Representation TheoremCesar Adriano Batista 19 June 2009 (has links)
Dados um espaço de medida (X;A;m) e números reais p,q>1 com 1/p+1/q=1, o Teorema de Representação de Riesz afirma que Lq(X;A;m) é o dual topológico de Lp(X;A;m) e que Loo(X;A; m) é o dual topológico de L1(X;A;m) se o espaço (X;A;m) for sigma-finito. Observamos que a sigma-finitude de (X;A;m) é condição suficiente mas não necessária para que Loo(X;A;m) seja o dual de L1(X;A;m). Os contra-exemplos tipicamente apresentados para essa última identificação são \"triviais\", no sentido de que desaparecem se \"consertarmos\" a medida , transformando-a numa medida perfeita. Neste trabalho apresentamos condições sufcientes mais fracas que sigma-finitude a fim de que Loo(X;A;m) e o dual de L1(X;A;m) possam ser isometricamente identificados. Além disso, introduzimos um invariante cardinal para espaços de medida que chamaremos a dimensão do espaço e mostramos que se o espaço (X;A;m) for de medida perfeita e tiver dimensão menor ou igual à cardinalidade do continuum então uma condição necessária e suficiente para Loo(X;A;m) seja o dual de L1(X;A;m) é que X admita uma decomposição. / Given a measure space (X;A;m) and real numbers p,q>1 with 1/p+1/q=1, the Riesz Representation Theorem states that Lq(X;A;m) is the topological dual space of Lp(X;A;m) and that Loo(X;A; m) is the topological dual space of L1(X;A;m) if (X;A; m) is sigma-finite. We observe that the sigma-finiteness of (X;A;m) is a suficient but not necessary condition for Loo(X;A;m) to be the dual of L1(X;A;m). The counter-examples that are typically presented for Loo(X;A;m) = L1(X;A;m)* are \"trivial\", in the sense that they vanish if we fix the measure , making it into a perfect measure. In this work we present suficient conditions weaker than sigma-finiteness in order that Loo(X;A; m) and L1(X;A;m)* can be isometrically identified. Moreover, we introduce a cardinal invariant for measure spaces which we call the dimension of the space and we show that if the space (X;A;m) has perfect measure and dimension less than or equal to the cardinal of the continuum then a necessary and suficient condition for Loo(X;A;m) = L1(X;A;m)* is that X admits a decomposition.
|
Page generated in 0.079 seconds