Spelling suggestions: "subject:"inverse MR damper"" "subject:"inverse MR hamper""
1 |
Nonlinear Mr Model Inversion for Semi-Active Control Enhancement With Open-Loop Force CompensationReader, Daniel Martin 09 June 2009 (has links)
The increased prevalence of semi-active control systems is largely due to the emergence of cost effective commercially available controllable damper technology such as Magneto-Rheological (MR) devices. Unfortunately, MR dampers exhibit highly nonlinear behavior, thus presenting an often over-looked complexity to the control system designer. With regards to controlling dampers, the well-known Skyhook Damping control algorithm has enjoyed great success for both fully active and semi-active control problems. The Skyhook design strategy is to create a control force that emulates what a passive linear damper would create when connected to an inertial reference frame. Skyhook control is device independent since it generates a desired control force command output that must be produced by the control system.
For simplicity, MR dampers are often assumed to have a linear relationship between the current input and the force output at a given relative velocity. Often this assumption is made implicitly and without knowledge of the underlying nonlinearity. This thesis shows that the overall performance of a semi-active Skyhook control system can be improved by explicitly inverting the nonlinear relationship between input current and output force. The proposed modification will work with any semi-active control algorithm, such as Skyhook, to insure that the controller performance is at least as good as the performance without the proposed modification. This technique is demonstrated through simulation on a quarter-vehicle system.
Hysteretic damping effects are incorporated into the modification by application of simple open loop force compensation. Laboratory testing of the hysteretic inversion process was performed with the goal of emulating an ideal linear damper without hysteresis. These results are compared with the implicit assumption thus providing a basis for validating the benefits of the improved methodology. / Master of Science
|
2 |
An Invertible Open-Loop Nonlinear Dynamic Temperature Dependent MR Damper ModelJumani, Sajit Satish 10 June 2010 (has links)
A Magnetorheological damper is a commonly used component in semi-active suspensions that achieves a high force capacity and better performance than a passive system, without the added expense and power draw of a fully active system, all while maintaining failsafe performance. To fully exploit the capabilities of an MR Damper, a high fidelity controller is required that is simple and easy to implement, yet does not compromise the accuracy or precision needed in many high-performance applications. There is a growing need for this level of operation, and this proposed work addresses these requirements by creating an empirically derived invertible model that enables the development of more accurate command signals by capturing the effect of temperature on a MR Damper's performance capabilities. Furthermore, this solution is specifically tailored for real-time application and does not require force feedback. Thus it requires low computation power and minimizes end-user cost by eliminating the need for additional high cost sensors such as load cells. A notable observation that resulted from the development of this proposed model was the difference in behavior between on and off states. Additionally a unique behavior was recognized with respect to the transition between high speed and low speed damping. For validation, the proposed model was compared against experimental data as well as an industry standard Spencer model; it produced excellent results in both cases with minimal error. / Master of Science
|
Page generated in 0.069 seconds