Spelling suggestions: "subject:"investigações matemática"" "subject:"inverstigações matemática""
1 |
Sobre possibilidades de ensino e aprendizagem dos números irracionais no 8º ano do Ensino Fundamental / Learning and teaching possibilities towards irrational numbers in the 8th grade of Elementary SchoolNobre, Ronaldo Bezerra 11 December 2017 (has links)
Esta dissertação apresenta um trabalho didático desenvolvido com turmas de 8º ano do Ensino Fundamental visando uma introdução significativa aos números irracionais, tanto quanto ao enfrentamento de dificuldades conceituais inerentes ao tema, como quanto ao envolvimento ativo dos estudantes no seu próprio aprendizado. Para elaborar, aplicar e analisar as atividades didáticas foram utilizados como embasamentos teóricos principais: a tese de doutorado de Olga Corbo (CORBO, O., 2012) sobre os conhecimentos necessários para a exploração de noções relativas aos números irracionais na Educação Básica e textos sobre investigações matemáticas de pesquisadores portugueses, sob a coordenação de João Pedro da Ponte (PONTE, J. P., et al., 1998 e ABRANTES, P. et al., 1999). As atividades foram planejadas visando abordagens dos conteúdos ricas em significados e acessíveis à faixa etária alvo. Estudantes de 8º ano realizaram pesquisas e apresentações em grupos sobre o número de ouro e atividades investigativas para explorar propriedades características dos números racionais e irracionais: representação decimal, associação à medida de segmentos de reta, localização na reta numerada, infinidade e densidade nesta reta. Em 2017, novas turmas desenvolveram atividades investigativas ampliando os objetivos para incluir a noção de comensurabilidade de segmentos de forma a viabilizar um debate participativo sobre a demonstração da incomensurabilidade entre o lado e a diagonal de um quadrado elaborada na Grécia antiga. Tudo isso contribuiu para que os estudantes concebessem, de maneira significativa para eles, a necessidade de uma infinidade de novos números para além dos racionais. / This dissertation presents a didactical work developed with 8th grade classes of Elementary School aiming a significant introduction to the irrational numbers in the sense that it confronts the conceptual difficulties related to the theme, as well the observation of the stimulating involvement of students in their learning process. In order to elaborate, apply and analyze the didactical activities, we considered as the main theoretical basis the doctoral thesis of Olga Corbo (CORBO,O., 2012) about the fundamental knowledge necessary for the exploration of irrational numbers in Basic Education and texts on mathematical investigations written by portuguese researchers and coordinated by João Pedro da Ponte (PONTE, JP, et al., 1998 and ABRANTES, P. et al., 1999). The activities were planned aiming to make the content approaches meaningful and accessible to the target age group. Eighth-grade students conducted researches and group presentations on the golden number and investigative activities to assess specific characteristics of rational and irrational numbers as: decimal representation, association to the measurement of straight segments, location in the numbered line, infinity, and density in this line. In 2017, new groups developed researches broadening the objectives to include the notion of commensurability of segments, in order to enable a debate in classroom about the demonstration of the incommensurability between the side and the diagonal of a square elaborated in ancient Greece. All of these steps contributed to the students understanding of the need for a multitude of new numbers besides rational ones.
|
2 |
O uso de investigações matemáticas na abordagem da semelhança de triângulos e aplicaçõesCruz, Josinaldo dos Santos 31 August 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This study aims to understand the importance of mathematical investigations in the
study of similar triangles and their applications. Considering the importance of research
activities for teaching and learning, this paper presents some de nitions , aspects and
considerations of this teaching methodology . We speak also of the teacher's role and
possible obstacles in carrying out investigative tasks. To this end, data was collected
through the implementation of three investigative activities in a class of 9th grade of
elementary school of a college of the state of Sergipe. The results show that the inclusion
of research activities in the classroom everyday , at any level of education , indicates a
better learning of the content studied. / Este trabalho tem como objetivo compreender a import^ancia das investiga c~oes matem aticas
no estudo da semelhan ca de tri^angulos e suas aplica c~oes. Levando em considera c~ao a import^
ancia das atividades investigativas para o ensino e a aprendizagem, este trabalho
apresenta algumas de ni c~oes, aspectos e considera c~oes acerca desta metodologia de ensino.
Falamos, tamb em, do papel do professor e dos poss veis obst aculos na realiza c~ao
das tarefas investigativas. Para tanto, os dados foram coletados por meio da realiza c~ao
de tr^es atividades investigativas em uma turma do 9 ano do Ensino Fundamental de um
col egio da rede estadual de Sergipe. Os resultados apontam que a inser c~ao de atividades
investigativas no cotidiano de sala de aula, em qualquer n vel de ensino, indica um melhor
aprendizado do conte udo estudado.
|
3 |
Sobre possibilidades de ensino e aprendizagem dos números irracionais no 8º ano do Ensino Fundamental / Learning and teaching possibilities towards irrational numbers in the 8th grade of Elementary SchoolRonaldo Bezerra Nobre 11 December 2017 (has links)
Esta dissertação apresenta um trabalho didático desenvolvido com turmas de 8º ano do Ensino Fundamental visando uma introdução significativa aos números irracionais, tanto quanto ao enfrentamento de dificuldades conceituais inerentes ao tema, como quanto ao envolvimento ativo dos estudantes no seu próprio aprendizado. Para elaborar, aplicar e analisar as atividades didáticas foram utilizados como embasamentos teóricos principais: a tese de doutorado de Olga Corbo (CORBO, O., 2012) sobre os conhecimentos necessários para a exploração de noções relativas aos números irracionais na Educação Básica e textos sobre investigações matemáticas de pesquisadores portugueses, sob a coordenação de João Pedro da Ponte (PONTE, J. P., et al., 1998 e ABRANTES, P. et al., 1999). As atividades foram planejadas visando abordagens dos conteúdos ricas em significados e acessíveis à faixa etária alvo. Estudantes de 8º ano realizaram pesquisas e apresentações em grupos sobre o número de ouro e atividades investigativas para explorar propriedades características dos números racionais e irracionais: representação decimal, associação à medida de segmentos de reta, localização na reta numerada, infinidade e densidade nesta reta. Em 2017, novas turmas desenvolveram atividades investigativas ampliando os objetivos para incluir a noção de comensurabilidade de segmentos de forma a viabilizar um debate participativo sobre a demonstração da incomensurabilidade entre o lado e a diagonal de um quadrado elaborada na Grécia antiga. Tudo isso contribuiu para que os estudantes concebessem, de maneira significativa para eles, a necessidade de uma infinidade de novos números para além dos racionais. / This dissertation presents a didactical work developed with 8th grade classes of Elementary School aiming a significant introduction to the irrational numbers in the sense that it confronts the conceptual difficulties related to the theme, as well the observation of the stimulating involvement of students in their learning process. In order to elaborate, apply and analyze the didactical activities, we considered as the main theoretical basis the doctoral thesis of Olga Corbo (CORBO,O., 2012) about the fundamental knowledge necessary for the exploration of irrational numbers in Basic Education and texts on mathematical investigations written by portuguese researchers and coordinated by João Pedro da Ponte (PONTE, JP, et al., 1998 and ABRANTES, P. et al., 1999). The activities were planned aiming to make the content approaches meaningful and accessible to the target age group. Eighth-grade students conducted researches and group presentations on the golden number and investigative activities to assess specific characteristics of rational and irrational numbers as: decimal representation, association to the measurement of straight segments, location in the numbered line, infinity, and density in this line. In 2017, new groups developed researches broadening the objectives to include the notion of commensurability of segments, in order to enable a debate in classroom about the demonstration of the incommensurability between the side and the diagonal of a square elaborated in ancient Greece. All of these steps contributed to the students understanding of the need for a multitude of new numbers besides rational ones.
|
Page generated in 0.2314 seconds