• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments

García García, Laura 07 October 2021 (has links)
[ES] La introducción de soluciones tecnológicas en la agricultura permite reducir el uso de recursos y aumentar la producción de los cultivos. Además, la calidad del agua de regadío se puede monitorizar para asegurar la seguridad de los productos para el consumo humano. Sin embargo, la localización remota de la mayoría de los campos presenta un problema para proveer de cobertura inalámbrica a los nodos sensores y actuadores desplegados en los campos y los canales de agua para regadío. El trabajo presentado en esta tesis aborda el problema de habilitar la comunicación inalámbrica entre los dispositivos electrónicos desplegados para la monitorización de la calidad del agua y el campo a través de un protocolo de comunicación y arquitectura heterogéneos. La primera parte de esta tesis introduce los sistemas de agricultura de precisión (PA) y la importancia de la monitorización de la calidad del agua y el campo. Asimismo, las tecnologías que permiten la comunicación inalámbrica en sistemas PA y el uso de soluciones alternativas como el internet de las cosas bajo tierra (IoUT) y los vehículos aéreos no tripulados (UAV) se introducen también. Después, se realiza un análisis en profundidad del estado del arte respecto a los sensores para la monitorización del agua, el campo y las condiciones meteorológicas, así como sobre las tecnologías inalámbricas más empleadas en PA. Además, las tendencias actuales y los desafíos de los sistemas de internet de las cosas (IoT) para regadío, incluyendo las soluciones alternativas introducidas anteriormente, han sido abordados en detalle. A continuación, se presenta la arquitectura propuesta para el sistema, la cual incluye las áreas de interés para las actividades monitorización que incluye las áreas de los canales y el campo. A su vez, la descripción y los algoritmos de operación de los nodos sensores contemplados para cada área son proporcionados. El siguiente capítulo detalla el protocolo de comunicación heterogéneo propuesto, incluyendo los mensajes y alertas del sistema. Adicionalmente, se presenta una nueva topología de árbol para redes híbridas LoRa/WiFi multisalto. Las funcionalidades específicas adicionales concebidas para la arquitectura propuesta están descritas en el siguiente capítulo. Éstas incluyen algoritmos de agregación de datos para la topología propuesta, un esquema de las amenazas de seguridad para los sistemas PA, algoritmos de ahorro de energía y tolerancia a fallos, comunicación bajo tierra para IoUT y el uso de drones para adquisición de datos. Después, los resultados de las simulaciones para las soluciones propuestas anteriormente son presentados. Finalmente, se tratan las pruebas realizadas en entornos reales para el protocolo heterogéneo presentado, las diferentes estrategias de despliegue de los nodos empleados, el consumo energético y la función de cuantificación de fruta. Estas pruebas demuestran la validez de la arquitectura y protocolo de comunicación heterogéneos que se han propuesto. / [CA] La introducció de solucions tecnològiques en l'agricultura permet reduir l'ús de recursos i augmentar la producció dels cultius. A més, la qualitat de l'aigua de regadiu es pot monitoritzar per assegurar la qualitat dels productes per al consum humà. No obstant això, la localització remota de la majoria dels camps presenta un problema per a proveir de cobertura sense fils als nodes sensors i actuadors desplegats als camps i els canals d'aigua per a regadiu. El treball presentat en aquesta tesi tracta el problema d'habilitar la comunicació sense fils entre els dispositius electrònics desplegats per a la monitorització de la qualitat de l'aigua i el camp a través d'un protocol de comunicació i arquitectura heterogenis. La primera part d'aquesta tesi introdueix els sistemes d'agricultura de precisió (PA) i la importància de la monitorització de la qualitat de l'aigua i el camp. Així mateix, també s'introdueixen les tecnologies que permeten la comunicació sense fils en sistemes PA i l'ús de solucions alternatives com l'Internet de les coses sota terra (IoUT) i els vehicles aeris no tripulats (UAV). Després, es realitza una anàlisi en profunditat de l'estat de l'art respecte als sensors per a la monitorització de l'aigua, el camp i les condicions meteorològiques, així com sobre les tecnologies sense fils més emprades en PA. S'aborden les tendències actuals i els reptes dels sistemes d'internet de les coses (IoT) per a regadiu, incloent les solucions alternatives introduïdes anteriorment. A continuació, es presenta l'arquitectura proposada per al sistema, on s'inclouen les àrees d'interès per a les activitats monitorització en els canals i el camp. Finalment, es proporciona la descripció i els algoritmes d'operació dels nodes sensors contemplats per a cada àrea. El següent capítol detalla el protocol de comunicació heterogeni proposat, així como el disseny del missatges i alertes que el sistema proposa. A més, es presenta una nova topologia d'arbre per a xarxes híbrides Lora/WiFi multi-salt. Les funcionalitats específiques addicionals concebudes per l'arquitectura proposada estan descrites en el següent capítol. Aquestes inclouen algoritmes d'agregació de dades per a la topologia proposta, un esquema de les alertes de seguretat per als sistemes PA, algoritmes d'estalvi d'energia i tolerància a fallades, comunicació per a IoUT i l'ús de drons per a adquisició de dades. Després, es presenten els resultats de les simulacions per a les solucions proposades. Finalment, es duen a terme les proves en entorns reals per al protocol heterogeni dissenyat. A més s'expliquen les diferents estratègies de desplegament dels nodes empleats, el consum energètic, així com, la funció de quantificació de fruita. Els resultats d'aquetes proves demostren la validesa de l'arquitectura i protocol de comunicació heterogenis propost en aquesta tesi. / [EN] The introduction of technological solutions in agriculture allows reducing the use of resources and increasing the production of the crops. Furthermore, the quality of the water for irrigation can be monitored to ensure the safety of the produce for human consumption. However, the remote location of most fields presents a problem for providing wireless coverage to the sensing nodes and actuators deployed on the fields and the irrigation water canals. The work presented in this thesis addresses the problem of enabling wireless communication among the electronic devices deployed for water quality and field monitoring through a heterogeneous communication protocol and architecture. The first part of the dissertation introduces Precision Agriculture (PA) systems and the importance of water quality and field monitoring. In addition, the technologies that enable wireless communication in PA systems and the use of alternative solutions such as Internet of Underground Things (IoUT) and Unmanned Aerial Vehicles (UAV) are introduced as well. Then, an in-depth analysis on the state of the art regarding the sensors for water, field and meteorology monitoring and the most utilized wireless technologies in PA is performed. Furthermore, the current trends and challenges for Internet of Things (IoT) irrigation systems, including the alternate solutions previously introduced, have been discussed in detail. Then, the architecture for the proposed system is presented, which includes the areas of interest for the monitoring activities comprised of the canal and field areas. Moreover, the description and operation algorithms of the sensor nodes contemplated for each area is provided. The next chapter details the proposed heterogeneous communication protocol including the messages and alerts of the system. Additionally, a new tree topology for hybrid LoRa/WiFi multi-hop networks is presented. The specific additional functionalities intended for the proposed architecture are described in the following chapter. It includes data aggregation algorithms for the proposed topology, an overview on the security threats of PA systems, energy-saving and fault-tolerance algorithms, underground communication for IoUT, and the use of drones for data acquisition. Then, the simulation results for the solutions previously proposed are presented. Finally, the tests performed in real environments for the presented heterogeneous protocol, the different deployment strategies for the utilized nodes, the energy consumption, and a functionality for fruit quantification are discussed. These tests demonstrate the validity of the proposed heterogeneous architecture and communication protocol. / García García, L. (2021). Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/174223 / TESIS
2

A Holistic Framework for Analyzing the Reliability of IoT Devices

Manca, Leonardo January 2023 (has links)
In the rapidly evolving landscape of the Internet of Things (IoT), ensuring consistency and reliability becomes a top priority for a seamless user experience. In many instances, reliability is assessed through Quality of Service (QoS) metrics, sidelining traditional reliability metrics that thrive on time-dependent failure rates. The lack of a comprehensive framework that fully integrates all layers of an IoT system adds to the complexity. This gap makes it difficult to pinpoint specific areas that need improvement and to conduct a thorough assessment of the system’s reliability. This project addresses this intricate challenge, which holds significant relevance for industry professionals but remains unresolved. The project introduced an IoT architecture spanning the Power, Device, Edge, Application, and Cloud Layers. Within each layer, potential failure points were identified, and the reliability was analysed deploying time-based failure rates with an exponential distribution. Reliability Block Diagrams (RBDs) were employed to map the intricate inter-dependencies, though the framework’s adaptive nature allows for other system reliability methodologies. One of the primary outcomes of this research is the development of a new framework tailored for evaluating the reliability of various IoT system components. This framework yields insights into both system reliability and availability over time, serving as a pivotal tool for stakeholders such as device manufacturers, system integrators, network providers, and research institutions. The results show how the framework emerges as a pivotal starting point for IoT system reliability evaluation. Before this thesis, the feasibility of such a framework was uncertain, with concerns about its potential bias – being either too pessimistic or optimistic. Yet, the tangible results from this work affirm its capability to provide a balanced and reasonable reliability estimation, given the intricacies of IoT devices. This paves the way for subsequent research, enabling a deeper dive into targeted enhancements and fostering a nuanced understanding of IoT reliability. / I det snabbt föränderliga IoT-landskapet (Internet of Things) är det av högsta prioritet att säkerställa konsekvens och tillförlitlighet för en sömlös användarupplevelse. I många fall bedöms tillförlitligheten med hjälp av QoSmått (Quality of Service), vilket innebär att traditionella tillförlitlighetsmått som bygger på tidsberoende felfrekvenser åsidosätts. Avsaknaden av ett heltäckande ramverk som integrerar alla lager i ett IoT-system bidrar till komplexiteten. Denna brist gör det svårt att identifiera specifika områden som behöver förbättras och att göra en grundlig bedömning av systemets tillförlitlighet. Detta projekt tar itu med denna komplicerade utmaning, som har stor relevans för branschfolk men som fortfarande inte har lösts. Projektet introducerade en IoT-arkitektur som spänner över kraft-, enhets-, Edge-, applikationsoch molnlagren. Inom varje lager identifierades potentiella felpunkter och tillförlitligheten analyserades med hjälp av tidsbaserade felfrekvenser med en exponentiell fördelning. Tillförlitlighetsblockdiagram (RBD) användes för att kartlägga de komplicerade ömsesidiga beroendena, även om ramverkets adaptiva natur möjliggör andra metoder för systemtillförlitlighet. Ett av de främsta resultaten av denna forskning är utvecklingen av ett nytt ramverk som är skräddarsytt för att utvärdera tillförlitligheten hos olika IoT-systemkomponenter. Detta ramverk ger insikter om både systemets tillförlitlighet och tillgänglighet över tid, och fungerar som ett viktigt verktyg för intressenter som tillverkare av enheter, systemintegratörer, nätverksleverantörer och forskningsinstitutioner. Resultaten visar hur ramverket framstår som en viktig utgångspunkt för utvärdering av IoT-systemens tillförlitlighet. Före den här avhandlingen var det osäkert om ett sådant ramverk var genomförbart, med farhågor om dess potentiella partiskhet - att vara antingen för pessimistisk eller optimistisk. De konkreta resultaten från detta arbete bekräftar dock ramverkets förmåga att ge en balanserad och rimlig uppskattning av tillförlitligheten, med tanke på IoT-enheternas komplexitet. Detta banar väg för efterföljande forskning, vilket möjliggör en djupare analys av riktade förbättringar och främjar en nyanserad förståelse av IoT-tillförlitlighet.

Page generated in 0.075 seconds