Spelling suggestions: "subject:"oon channels"" "subject:"oon ehannels""
81 |
Ion channels and intrinsic membrane properties of locomotor network neurons in the lamprey spinal cordWang, Di, January 2009 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2009. / Härtill 4 uppsatser.
|
82 |
Identification of a novel interaction between the M2 protein of influenza A virus and cyclin D3: consequencesfor cell cycle progressionZhang, Yang, 张阳 January 2011 (has links)
published_or_final_version / Anatomy / Master / Master of Philosophy
|
83 |
Small molecule-based synthetic ion channels modulate smooth muscle contraction and epithelial ion transportYau, Kwok-hei, 邱國禧 January 2011 (has links)
In living systems, ion channels are membrane transport proteins that provide pathways for the passive diffusion of ions through lipid membranes. The flow of ions across membranes is the basis of many important physiological processes, including but not limited to the regulation of membrane potential, transepithelial transport and cell volume. While many efforts have been made to understand the biological roles of natural ion channels, the biological activities of artificial ion channels remain largely unknown. Recently, it was reported that a small molecule 1, which forms synthetic chloride (Cl–) channels in membranes via self-assembly, is capable of modulating vascular functions. In this thesis, novel small molecules that are structurally similar to 1 are shown to form artificial ion channels in membranes. Together with 1, the effects of these small molecules on the contractile activities of smooth muscles and epithelial ion transport are explored. The therapeutic implications of the findings are also discussed.
A collection of small molecules was screened using liposome-based fluorescence assays. In these assays, the ability of the synthetic compounds to modulate membrane potential was monitored. The screening yielded compound 3 that formed synthetic potassium (K+) channels in liposomal membranes, although the liposome-based fluorescence experiments suggested that 3 also transported Cl–. Two derivatives of 3, namely, compounds 2 and 4 were also examined. Single-channel recording experiments suggested that 2 forms synthetic Cl– channels in liposomal membranes.
The effects of compounds 2 and 3 on the functions of the vascular smooth muscle are explored. Using confocal imaging, it was shown that both 2 and 3 counteracted the effects of high-K+ depolarizing solution on membrane potential and intracellular Ca2+ concentration ([Ca2+]i) in cultured vascular smooth muscle cells. 2 and 3 also relaxed mice aortic rings pre-contracted with high-K+ solution. These observations can be explained in terms of the Cl– transporting functions of 2 and 3.
To determine the potential for developing the compounds into bronchodilators, the effects of compounds 1 and 3 on the contractile activities of the airway smooth muscle (ASM) were explored using organ bath technique. The contractile activities of the trachea isolated from Sprague-Dawley (SD) rats were first characterized. Among the contractile agents used, only potassium chloride (KCl), cholinergic agonists, serotonin and endothelin-1 were contractile to the SD rat trachea. 1 and 3 relaxed the ASM pre-contracted with KCl, whereas the contractions induced by other agonists were not affected.
The ability of compounds 2, 3 and 4 to modulate ion transport across cultured epithelia was tested by the short-circuit current measurement technique. It was shown that the compounds were capable of inducing Cl– secretion when applied to the apical side of airway and colonic epithelia. Importantly, the synthetic compounds induced apical Cl– secretion in immortalized cystic fibrosis (CF) bronchial epithelia. This suggests that the synthetic compounds may be used to correct the anion transport defect in CF epithelia.
In summary, the small-molecule based synthetic ion channels demonstrated two important general functions of natural ion channels, namely, the regulation of membrane potential and epithelial ion transport. / published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
84 |
The role of ion channels in gastric mucosal healingWu, Ka-kei., 胡嘉麒. January 2005 (has links)
published_or_final_version / abstract / Pharmacology / Master / Master of Philosophy
|
85 |
Regulation of Ion Channel Physiology in Airway Epithelial cells in response to Influenza A Virus Infection2013 August 1900 (has links)
Epithelial cells lining the upper airways are characterized by low sodium absorption and elevated chloride secretion. Together, the movement of these ions creates the osmotic drive to hydrate the airways. Recent studies indicate that influenza is capable of directly modulating the vectorial transport of sodium and chloride ions. However, the direct impact of influenza has not been studied with respect to potassium channels. This is significant because potassium conductance creates the driving force for chloride secretion. Disruptions to this process leads to edema formation in the lungs and can subsequently cause Acute Respiratory Distress Syndrome. Additionally, it has been demonstrated that the induction of pro-inflammatory cytokines in infected cells may contribute to altered ion channel function, further exacerbating edema formation. The purpose of this study was to assess the direct and indirect effects of influenza virus infection on potassium and chloride ion channel function in a secretory epithelial cell model.
In order to assess the direct effects we exposed polarized epithelial cell monolayers to varying doses of H1N1 virus. Potassium and chloride channel function was measured by means of short-circuit current in an Ussing chamber. The immune response to viral infection was determined by RT-qPCR and Bioplex suspension array. Virus conditioned media (CM), and IL-8 were used to characterize the indirect effects on non-infected cells.
We observed an increase in chloride secretion, consistent with edema formation, when 60% of the epithelium was infected, and after CM treatment. This observation correlated with increased potassium channel conductance through the calcium-activated (KCNN4) and cAMP-activated potassium channels (KCNQ1), which was ameliorated upon specific inhibition of these channels. The data suggest that the mixture of pro-inflammatory cytokines induced by viral infection directly up-regulate these potassium channels. However, treatment with IL-8 also appears to increase chloride secretion, although the underlying mechanism remains to be determined, as it is not mediated through KCNN4 and KCNQ1. We conclude that the strong induction of cytokines in infected cells act in a paracrine manner on non-infected cells to increase potassium channel conductance. This up-regulation of potassium channels subsequently drives an increase in chloride secretion, leading to fluid build-up in the lungs and edema formation.
|
86 |
Molecular Basis of Abnormal Conduction in Mice Over-expressing Endothelin-1Mueller, Erin 10 January 2012 (has links)
Binary transgenic (BT) mice with doxycycline (DOX)-suppressible cardiac-specific over-expression of endothelin 1 (ET 1) exhibit progressive heart failure, QRS prolongation, and death following DOX withdrawal. However, the molecular basis and reversibility of the electrophysiological abnormalities in this model were not known. Here we assess the mechanisms underlying ET 1 mediated electrical remodelling, and its role in heart failure. Prior attempts to prevent this model of ET-1 induced cardiomyopathy with ET receptor antagonism were not beneficial. We now propose to evaluate the effectiveness of blocking the synthesis of ET-1 with CGS 26303, a dual inhibitor of endothelin converting enzyme (ECE) and neutral endopeptidase.
BT vs. littermate control mice were withdrawn from DOX and serially studied with ultrasound biomicroscopy, octapolar catheters, multi-electrode epicardial mapping, histopathology, Western blot, immunohistochemistry and qRT-PCR. Prolonged ventricular activation and depressed rate of ventricular activation were detected as early as 4 wks after transgene activation, when structure and function of the heart remained unaffected. By 8 wks of ET-1 over-expression, biventricular systolic and diastolic dysfunction, myocardial fibrosis, cardiomyocyte hypertrophy, prolonged ventricular activation and repolarization, depressed rate of ventricular activation, and abnormal atrioventricular nodal function were observed. Within 4 wks of ET-1 induction, reduction were observed in connexin-43 mRNA, protein, and phosphorylation, Nav1.5 mRNA and protein, Na+ conductance, K+ channel interacting protein-2 mRNA and Kv4.2 mRNA. Chromatin immunoprecipitation revealed that nuclear factor κB preferentially binds to Cx43 and Nav1.5 promoters. Importantly, the associated electrophysiological abnormalities at this time point were reversible upon suppression of ET 1 over-expression and completely prevented the development of structural and functional remodelling. Treatment with CGS-26303 (5 mg/kg/day) failed to improve survival, or hemodynamic and contractile decline.
ET-1-mediated ventricular conduction delays correlates with gap junction and ion channel remodelling, and precedes heart failure. The sequence and reversibility of this phenotype suggest that a primary abnormality in electrical remodelling may contribute to the pathogenesis of heart failure. CGS 26303 failed to prevent this cardiomyopathic phenotype. These data suggest that chronically high levels of bigET-1, as seen in heart failure, may induce increased ECE activity and/or non-ECE ET-1 synthesis, thus circumventing the efficacy of ECE blockade in this model.
|
87 |
Molecular Basis of Abnormal Conduction in Mice Over-expressing Endothelin-1Mueller, Erin 10 January 2012 (has links)
Binary transgenic (BT) mice with doxycycline (DOX)-suppressible cardiac-specific over-expression of endothelin 1 (ET 1) exhibit progressive heart failure, QRS prolongation, and death following DOX withdrawal. However, the molecular basis and reversibility of the electrophysiological abnormalities in this model were not known. Here we assess the mechanisms underlying ET 1 mediated electrical remodelling, and its role in heart failure. Prior attempts to prevent this model of ET-1 induced cardiomyopathy with ET receptor antagonism were not beneficial. We now propose to evaluate the effectiveness of blocking the synthesis of ET-1 with CGS 26303, a dual inhibitor of endothelin converting enzyme (ECE) and neutral endopeptidase.
BT vs. littermate control mice were withdrawn from DOX and serially studied with ultrasound biomicroscopy, octapolar catheters, multi-electrode epicardial mapping, histopathology, Western blot, immunohistochemistry and qRT-PCR. Prolonged ventricular activation and depressed rate of ventricular activation were detected as early as 4 wks after transgene activation, when structure and function of the heart remained unaffected. By 8 wks of ET-1 over-expression, biventricular systolic and diastolic dysfunction, myocardial fibrosis, cardiomyocyte hypertrophy, prolonged ventricular activation and repolarization, depressed rate of ventricular activation, and abnormal atrioventricular nodal function were observed. Within 4 wks of ET-1 induction, reduction were observed in connexin-43 mRNA, protein, and phosphorylation, Nav1.5 mRNA and protein, Na+ conductance, K+ channel interacting protein-2 mRNA and Kv4.2 mRNA. Chromatin immunoprecipitation revealed that nuclear factor κB preferentially binds to Cx43 and Nav1.5 promoters. Importantly, the associated electrophysiological abnormalities at this time point were reversible upon suppression of ET 1 over-expression and completely prevented the development of structural and functional remodelling. Treatment with CGS-26303 (5 mg/kg/day) failed to improve survival, or hemodynamic and contractile decline.
ET-1-mediated ventricular conduction delays correlates with gap junction and ion channel remodelling, and precedes heart failure. The sequence and reversibility of this phenotype suggest that a primary abnormality in electrical remodelling may contribute to the pathogenesis of heart failure. CGS 26303 failed to prevent this cardiomyopathic phenotype. These data suggest that chronically high levels of bigET-1, as seen in heart failure, may induce increased ECE activity and/or non-ECE ET-1 synthesis, thus circumventing the efficacy of ECE blockade in this model.
|
88 |
Turgor regulation in species of Vaucheria (Xanthophyceae, Heterokontophyta) from habitats of contrasting salinitiesMuralidhar, Abishek January 2014 (has links)
Turgor regulation is the process by which walled organisms alter their internal osmotic potential to adapt to osmotic changes in the environment. Much of what we know regarding turgor regulation and osmotic adjustment in algae is limited to the green characean and chlorphytan algae. This thesis is an investigation of turgor regulation in two species of the yellow-green xanthophycean alga, Vaucheria.
The first part of this study involved the collection and identification of species of Vaucheria from contrasting habitats in New Zealand. Seven species of Vaucheria were identified based on the morphology of their reproductive structures. Two were described as new species (V. aestuarii and V. edaphica) and two others were reported for the first time from New Zealand (V. erythrospora and V. litorea). The genetic variation and phylogenetic position of these species were studied using phylogenetic analyses of rbcL sequences.
Two of the species from contrasting habitats were selected for a comparative study on turgor regulation. These were Vaucheria erythrospora, isolated from an estuarine habitat, and Vaucheria repens, isolated from a freshwater habitat. Using a single cell pressure probe to directly measure turgor after hyperosmotic shock, V. erythrospora was found to recover turgor after a larger shock than V. repens. Threshold shock values for this ability were > 0.5 MPa for V. erythrospora and < 0.5 MPa for V. repens. Recovery was more rapid in V. erythrospora than V. repens after comparable shocks. Growth studies showed that V. erythrospora was able to grow and maintain turgor over a wider range of NaCl concentrations. These responses are thought to underlie the ability of V. erythrospora to survive in an estuarine habitat and restrict V. repens to freshwater.
xi
The final part of this study investigated the mechanisms underlying turgor regulation in V. erythrospora. Different responses were observed depending on whether NaCl or sorbitol was used to elicit the shock. Membrane potential (Em) measurements showed a rapid depolarization of the plasma membrane in response to a NaCl-induced hyperosmotic shock, followed by a slower repolarization, and recovery almost back to the resting Em. MIFE recordings indicate a net K+ efflux, a response that has been reported in other systems. While recordings of Na+ fluxes were not possible due to the high external Na+, these may account for the depolarisation and recovery of turgor as turgor recovery was inhibited by the non-selective cation channels (NSCCs) inhibitor Gd3+ and was dependant on the external Na+ concentration. An equivalent sorbitol-induced hyperosmotic shock hyperpolarized the Em, followed by depolarization and recovery back to the resting Em. Net flux recordings showed that both K+ and Na+ were taken up in response to a sorbitol shock when there was a low external Na+ concentration (1mM). K+ was possibly taken up through inward rectifying K+ channels activated by membrane hyperpolarization. The ability of V. erythrospora to rapidly regulate turgor by taking up ions during hyperosmotic stress is the possible reason for its survival in an estuarine habitat.
|
89 |
Domain II (S5-P) region in Lymnaea T-type calcium channels and its role in determining biophysical properties, ion selectivity and drug sensitivityGuan, Wendy 27 May 2015 (has links)
Invertebrate T-type calcium channels cloned from the great pond snail, Lymnaea Stagnalis (LCav3) possess highly sodium permeant ion channel currents by means of alternative splicing of exon 12. Exon 12 is located on the extracellular turret and the descending helix between segments 5 and segments 6, upstream of the ion selectivity filter in Domain II. Highly-sodium permeant T-type channels are generated without altering the selectivity filter locus, the primary regulatory domain known to govern ion selectivity for calcium and sodium channels. Comparisons of exon 12 sequences between invertebrates and vertebrate T-type channels reveals a conserved pattern of cysteine residues. Calcium-selective mammalian T-type channels possess a single cysteine in exon 12 in comparison to invertebrate T-type channels with either a tri- or penta- cysteine framework. Cysteine residues in exon 12 were substituted with a neutral amino acid, alanine in LCav3 channels harbouring exon 12a and 12b to mimic the turret structure of vertebrate T-type channels. The results generated T-type channels that were even more sodium-permeable than the native T-type channels in snails. Furthermore, permeant divalent ions similar in structure to calcium (eg. barium) were unable to sufficiently block the monovalent ion current of channels lacking cysteines in Domain II, suggesting that the pore is highly sodium permeant, and has weak affinity and block by permeant divalent ions other than calcium. Besides ion selectivity, the cysteine mutated T-type channels were 10 to 100 fold more sensitive to inhibition by nickel and zinc, respectively. The cysteine mutation data highly suggests that the cysteines form an extracellular structure that regulates ion selectivity and shields T-type channels from block by nickel and zinc. In addition, we replaced exon 12 from the sodium permeant snail T-type channel with exon 12 from human Cav3.2 channels. The snail T-type channel with exon 12 from human T-type channels produced a T-type channel that was modestly sodium permeable, but did not confer the high calcium permeability of Cav3.2 channels. These findings suggest that the cysteine containing extracellular domains in exon 12 are not sufficient to generate calcium selective channels similar to human Cav3.2 and likely work in concert with other extracellular domains to regulate the calcium or sodium selectivity of T-type channels.
|
90 |
Role of alternative splicing in the biological properties of the voltage-gated potassium channel Kv10.1Romaniello, Vincenzo 20 May 2014 (has links)
No description available.
|
Page generated in 0.0412 seconds