• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of Ion Channel Physiology in Airway Epithelial cells in response to Influenza A Virus Infection

2013 August 1900 (has links)
Epithelial cells lining the upper airways are characterized by low sodium absorption and elevated chloride secretion. Together, the movement of these ions creates the osmotic drive to hydrate the airways. Recent studies indicate that influenza is capable of directly modulating the vectorial transport of sodium and chloride ions. However, the direct impact of influenza has not been studied with respect to potassium channels. This is significant because potassium conductance creates the driving force for chloride secretion. Disruptions to this process leads to edema formation in the lungs and can subsequently cause Acute Respiratory Distress Syndrome. Additionally, it has been demonstrated that the induction of pro-inflammatory cytokines in infected cells may contribute to altered ion channel function, further exacerbating edema formation. The purpose of this study was to assess the direct and indirect effects of influenza virus infection on potassium and chloride ion channel function in a secretory epithelial cell model. In order to assess the direct effects we exposed polarized epithelial cell monolayers to varying doses of H1N1 virus. Potassium and chloride channel function was measured by means of short-circuit current in an Ussing chamber. The immune response to viral infection was determined by RT-qPCR and Bioplex suspension array. Virus conditioned media (CM), and IL-8 were used to characterize the indirect effects on non-infected cells. We observed an increase in chloride secretion, consistent with edema formation, when 60% of the epithelium was infected, and after CM treatment. This observation correlated with increased potassium channel conductance through the calcium-activated (KCNN4) and cAMP-activated potassium channels (KCNQ1), which was ameliorated upon specific inhibition of these channels. The data suggest that the mixture of pro-inflammatory cytokines induced by viral infection directly up-regulate these potassium channels. However, treatment with IL-8 also appears to increase chloride secretion, although the underlying mechanism remains to be determined, as it is not mediated through KCNN4 and KCNQ1. We conclude that the strong induction of cytokines in infected cells act in a paracrine manner on non-infected cells to increase potassium channel conductance. This up-regulation of potassium channels subsequently drives an increase in chloride secretion, leading to fluid build-up in the lungs and edema formation.
2

Functional analysis of the potassium channel beta subunit KCNE3

Ferrer, Patricia Preston 26 January 2011 (has links)
KCNE-Hilfsuntereinheiten assoziieren mit Spannungs-abhängigen K+-Kanälen und verändern dadurch deren subzelluläre Lokalisation, Regulation sowie deren biophysikalische Eigenschaften. Bei heterologer Expression interagiert KCNE3 mit mehreren Poren-bildenden K+-Kanal-Hauptuntereinheiten, deren Ströme dadurch stark modifiziert werden. Aufgrund dieser in vitro-Experimente wurden verschiedenste Funktionen von KCNE3 in den verschiedenen Geweben, wie Gehirn, Herz, Muskel, Kolon und Niere, vermutet. Außerdem wurden Variationen im kcne3-Gen mit menschlichen Skelettmuskelpathologien in Verbindung gesetzt (Abbott et al. 2001). In der gegenwärtigen Literatur wird die physiologische Funktion von KCNE3 eher als komplex und heterogen dargestellt. Auch die direkte Beteiligung von KCNE3 an Krankheiten ist immer noch spekulativ. Zur Untersuchung der physiologischen Funktion von KCNE3 in vivo sowie der potentiellen Rolle bei Krankheiten generierten wir ein kcne3-/- Mausmodell. Die vorliegende Arbeit unterstützt die kritische Rolle der KCNQ1/KCNE3-Kanäle beim Salz- und Flüssigkeitstransport über intestinale und respiratorische Epithelien. Insbesondere fanden wir für die KCNQ1/KCNE3-Heteromere eine basolaterale Lokalisation in Darm- und Trachea-Epithelzellen, wo sie die transepitheliale Cl--Sekretion über basolaterales Recycling von K+-Ionen sowie über Erhöhung der elektrochemischen Triebkraft für apikalen Cl--Austritt fördern. Da weder Veränderungen in der KCNQ1-Expressionsmenge noch in dessen subzellulärer Lokalisation festgestellt wurden, ist die durch KCNE3 verursachte Modifikation der KCNQ1-Kanaleigenschaften essenziell für die hier beschriebene physiologische Rolle im Intestinal- und Trachealtransport. Ferner wird von unserer Arbeit die postulierte Funktion von KCNE3-Heteromeren im Skelettmuskel, Herz und zentralen Nervensystem nicht unterstützt und erweckt somit erhebliche Zweifel über den Beitrag von KCNE3 zu menschlichen Krankheiten, die mit diesen Organen in Verbindung stehen. / When overexpressed in heterologous systems, KCNE3 is able to interact with several pore-forming K+ channel alpha subunits greatly modifying their currents. Based on these in vitro evidences, KCNE3 has been proposed to serve different roles in multiple tissues, including brain, heart, muscle, colon and kidney. Additional reports have also linked sequence variations in the KCNE3 gene to cardiac and skeletal muscle pathologies in human. Based on the literature, the overall picture of KCNE3 physiological function is rather complex and heterogeneous, and its direct involvement in pathologies is still speculative and far from being conclusively proven. In order to study the physiological role of KCNE3 in vivo and to address its potential pathological implications, we generated kcne3-/- mice. The present analysis of kcne3-/- mice strongly supports a crucial role of KCNQ1/KCNE3 channels in salt- and fluid secretion across intestinal and airway epithelia. In particular, we found that KCNQ1/KCNE3 heteromers are present in basolateral membranes of intestinal and tracheal epithelial cells where they facilitate transepithelial Cl- secretion through basolateral recycling of K+ ions and by increasing the electrochemical driving force for apical Cl- exit. Because the abundance and subcellular localization of KCNQ1 was unchanged in kcne3-/- mice, the modification of biophysical properties of KCNQ1 by KCNE3 is essential for its role in intestinal and tracheal transport. In addition, our work does not support the postulated role of KCNE3 heteromers in skeletal muscle, heart and CNS physiology, and raises considerable doubts concerning its implication in human pathologies which affect these tissues.

Page generated in 0.0207 seconds