• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 11
  • 10
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 72
  • 72
  • 20
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mass transfer analysis of polyether sulfone and polyamide membranes modified by ion beam irradiation /

King, Stanley W. January 2004 (has links)
Thesis (M.S.C.)--University of Toledo, 2004. / Typescript. "A thesis [submitted] as partial fulfillment of the requirements of the Master of Science degree in Chemical Engineering." Bibliography: leaves 109-113.
22

The nuclear interactions of high energy particles

Craddock, Michael Kevin January 1964 (has links)
No description available.
23

Aluminum K x-ray production and electron transfer cross sections for oxygen, nitrogen, and flourine ions from 0.6 to 2.2 MEV

Gealy, Glenn S. January 1978 (has links)
Call number: LD2668 .T4 1978 G42 / Master of Science
24

Electrostatic depositional control of particles by a novel electrogasdynamic method and by ionic bombardment in a mono-ionizedfield

Coffee, Ronald Alan. January 1973 (has links)
published_or_final_version / Electrical Engineering / Doctoral / Doctor of Philosophy
25

Conceptual design of heavy ion beam compression using a wedge / 以楔形靶壓縮重離子束的概念設計 / CUHK electronic theses & dissertations collection / Conceptual design of heavy ion beam compression using a wedge / Yi xie xing ba ya suo zhong li zi shu de gai nian she ji

January 2015 (has links)
Wong, Chun Yan Jonathan = 以楔形靶壓縮重離子束的概念設計 / 黃駿仁. / Thesis M.Phil. Chinese University of Hong Kong 2015. / Includes bibliographical references (leaves 140-144). / Abstracts also in Chinese. / Title from PDF title page (viewed on 15, September, 2016). / Wong, Chun Yan Jonathan = Yi xie xing ba ya suo zhong li zi shu de gai nian she ji / Huang Junren.
26

study of induced damages in surface cleaning and ion mixing in high resolution depth profiling under low energy argon ion sputtering. / 低能量氬離子濺射於表面淸潔及高解像深度剖析時所產生的損傷及離子混合的硏究 / A study of induced damages in surface cleaning and ion mixing in high resolution depth profiling under low energy argon ion sputtering. / Di neng liang ya li zi jian she yu biao mian qing jie ji gao jie xiang shen du pou xi shi suo chan sheng de sun shang ji li zi hun he de yan jiu

January 2000 (has links)
by Kwok-fung Kan = 低能量氬離子濺射於表面淸潔及高解像深度剖析時所產生的損傷及離子混合的硏究 / 簡國豐. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references. / Text in English; abstracts in English and Chinese. / by Kwok-fung Kan = Di neng liang ya li zi jian she yu biao mian qing jie ji gao jie xiang shen du pou xi shi suo chan sheng de sun shang ji li zi hun he de yan jiu / Jian Guofeng. / Abstract --- p.ii / 論文摘要 --- p.iii / Acknowledgement --- p.iv / Table of Contents --- p.v / List of Figures --- p.ix / List of Tables --- p.xi / Chapter Chapter 1 --- Background and Goals of the Thesis Work --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.1.1 --- Surface contamination of semiconductors --- p.1 / Chapter 1.1.2 --- Common surface cleaning methods --- p.2 / Chapter 1.1.3 --- Quality control in ultrathin gate dielectrics --- p.3 / Chapter 1.1.4 --- High-resolution depth profiling --- p.5 / Chapter 1.2 --- Energy range limitation in sputtering --- p.5 / Chapter 1.3 --- Goals of this thesis study --- p.6 / References for Chapter1 --- p.7 / Chapter Chapter 2 --- Theoretical Background and Instrumentation --- p.9 / Chapter 2.1 --- Ion Bombardment --- p.9 / Chapter 2.1.1 --- Bombardment mechanism --- p.9 / Chapter 2.1.2 --- Ion beam induced damage --- p.10 / Chapter 2.1.2.1 --- Region of damage --- p.10 / Chapter 2.1.2.2 --- Structural changes --- p.11 / Chapter 2.1.3 --- Assessment methods on ion beam damage and ion mixing --- p.12 / Chapter 2.1.3.1 --- Assessment methods on ion beam damage --- p.12 / Chapter 2.1.3.2 --- Assessment of ion mixing in the sample --- p.13 / Chapter 2.1.4 --- Minimizing the sputtered damage and ion mixing --- p.14 / Chapter 2.1.5 --- Ion gun --- p.15 / Chapter 2.1.5.1 --- Mechanism of the generation of an argon ion beam --- p.15 / Chapter 2.1.5.2 --- Description of ion gun --- p.16 / Chapter 2.1.5.3 --- Calibration of current density provided by the ion gun --- p.16 / Chapter 2.1.5.4 --- Sputtering time --- p.16 / Chapter 2.2 --- X-ray photoelectron spectroscopy(XPS) --- p.18 / Chapter 2.2.1 --- Principle of XPS --- p.18 / Chapter 2.2.1.1 --- Qualitative analysis of XPS --- p.18 / Chapter 2.2.1.2 --- Quantitative analysis of XPS --- p.20 / Chapter 2.2.2 --- Angle-resolved XPS --- p.24 / Chapter 2.2.3 --- Set-up --- p.25 / Chapter 2.2.3.1 --- UHV system --- p.27 / Chapter 2.2.3.2 --- X-ray source --- p.27 / Chapter 2.2.3.3 --- Electron energy analyser --- p.27 / Chapter 2.2.3.4 --- Detector --- p.28 / Chapter 2.2.4 --- Calibration of XPS --- p.28 / References for Chapter2 --- p.29 / Chapter Chapter 3 --- Damages induced by ion sputtering --- p.31 / Chapter 3.1 --- Introduction --- p.31 / Chapter 3.2 --- Experimental --- p.31 / Chapter 3.2.1 --- Sample preparation --- p.31 / Chapter a. --- Surface cleaning and oxidization --- p.31 / Chapter b. --- HF etching --- p.32 / Chapter c. --- Indium back contact --- p.32 / Chapter 3.2.2 --- XPS analysis --- p.33 / Chapter 3.2.2.1 --- Data acquisition --- p.33 / Chapter 3.2.2.2 --- Peak deconvolution --- p.33 / Chapter 3.2.3 --- Ion sputtering --- p.34 / Chapter 3.3 --- Results and discussion --- p.34 / Chapter 3.3.1 --- Spectral width of In3d and P2p peak --- p.34 / Chapter 3.3.2 --- Deconvolution of In3d signal at take-off angle of 90° --- p.37 / Chapter 3.3.2.1 --- In in bulk InP --- p.37 / Chapter 3.3.2.2 --- In metal --- p.37 / Chapter 3.3.2.3 --- In in damaged InP region --- p.37 / Chapter 3.3.3 --- Deconvolution of P2p signal at take off angle of 45° --- p.37 / Chapter 3.3.3.1 --- P in bulk InP --- p.37 / Chapter 3.3.3.2 --- P in damaged InP region --- p.37 / Chapter 3.3.4 --- Relative composition of deconvoluted components --- p.38 / Chapter 3.3.5 --- Fermi level shift --- p.39 / Chapter 3.3.6 --- Analysis at take-off angle of 45° --- p.40 / Chapter 3.3.7 --- Stoichiometry in sputtered InP --- p.43 / Chapter 3.4 --- Conclusions --- p.45 / References for Chapter3 --- p.46 / Chapter Chapter 4 --- Ion mixing in sputtered depth profiling --- p.47 / Chapter 4.1 --- Introduction --- p.47 / Chapter 4.2 --- Experimental --- p.47 / Chapter 4.2.1 --- Sample description --- p.47 / Chapter 4.2.2 --- Acquisition conditions --- p.47 / Chapter 4.2.3 --- Raw data --- p.48 / Chapter 4.2.4 --- Data treatments --- p.48 / Chapter 4.2.4.1 --- Depth calibration --- p.48 / Chapter 4.2.4.2 --- Calibration procedure --- p.55 / Chapter A. --- Overlayer region --- p.55 / Chapter B. --- Substrate region --- p.56 / Chapter 4.3 --- Results and discussions --- p.57 / Chapter 4.3.1 --- Study of ion mixing using depth profile --- p.57 / Chapter A. --- Comparing the carbon profiles at two ion sputtering energies --- p.59 / Chapter B. --- Comparing the nitrogen profiles at two ion sputtering energies --- p.59 / Chapter C. --- Comparing the oxygen profiles at two ion sputtering energies --- p.59 / Chapter 4.3.2 --- Study of ion mixing from a change in sputtering rate --- p.60 / Chapter 4.3.3 --- Approximation on ion mixing --- p.64 / Chapter 4.3.4 --- Conclusions --- p.66 / References for Chapter4 --- p.67 / Chapter Chapter 5 --- Conclusions --- p.68
27

Theoretical transition energies, lifetimes and fluorescence yields for multiply-ionized fluorine and silicon

Can, Cuneyt, 1951- January 2011 (has links)
Vita. / Digitized by Kansas Correctional Industries
28

Ion beam synthesis and characterization of magnetic nanocomposite films.

January 2004 (has links)
Lo Kwok Wing. / Thesis submitted in: November 2003. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 95-98). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.ii / Table of Contents --- p.iii / List of Figures --- p.iv / List of Tables --- p.v / Chapter iii. --- Table of Contents / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Magnetic CoPt and FePt Alloys --- p.1 / Chapter 1.1.2 --- Crystal Structures --- p.2 / Chapter 1.1.3 --- Magnetic Properties --- p.5 / Chapter 1.2 --- Magnetic Nanocomposite Films --- p.6 / Chapter 1.2.1 --- Ferromagnetic CoPt & FePt Alloy Nanoparticles --- p.7 / Chapter 1.3 --- Preparation Methods of CoPt & FePt Nanocomposite Films --- p.8 / Chapter 1.4 --- Aim and Motivation of this Research Project --- p.9 / Chapter Chapter 2 --- Sample Preparation and Characterization Techniques --- p.11 / Chapter 2.1 --- Sample Preparation --- p.11 / Chapter 2.1.1 --- Metal Vapor Vacuum Arc (MEVVA) Implantation System --- p.11 / Chapter 2.1.2 --- Preparation Procedures --- p.13 / Chapter 2.2 --- Characterization Techniques --- p.18 / Chapter 2.2.1 --- Rutherford Backscattering Spectroscopy (RBS) --- p.18 / Chapter 2.2.2 --- X-ray Diffractometry (XRD) --- p.20 / Chapter 2.2.3 --- Atomic Force Microscopy (AFM) --- p.23 / Chapter 2.2.4 --- Vibrating Sample Magnetometry (VSM) --- p.24 / Chapter Chapter 3 --- Characterization of Co and CoPt Implanted Samples --- p.28 / Chapter 3.1 --- Composition of Implanted Samples --- p.28 / Chapter 3.2 --- Phase Evolution and Crystal Structures --- p.34 / Chapter 3.2.1 --- Phase Evolution with Annealing Temperature --- p.35 / Chapter 3.2.2 --- Grain Size of Implanted Samples --- p.37 / Chapter 3.3 --- Magnetic Properties --- p.37 / Chapter 3.3.1 --- Dependence of Hc on Film Compositions --- p.39 / Chapter 3.3.2 --- Dependence of Hc on annealing Temperature --- p.42 / Chapter Chapter 4 --- Characterization of Fe and FePt Implanted Samples --- p.44 / Chapter 4.1 --- Overview --- p.44 / Chapter 4.2 --- Low Dose Implanted Samples --- p.44 / Chapter 4.2.1 --- RBS --- p.44 / Chapter 4.2.2 --- Phase Formation and Crystal Structures --- p.48 / Chapter 4.2.2-1 --- Phase Evolution with Annealing Temperature --- p.49 / Chapter 4.2.3 --- Grain Size of Implanted Samples --- p.51 / Chapter 4.2.4 --- AFM Results --- p.53 / Chapter 4.2.5 --- Magnetic Properties --- p.55 / Chapter 4.2.5-1 --- M-H Characteristics --- p.55 / Chapter 4.2.5-2 --- Coercivity Against Annealing Temperature --- p.55 / Chapter 4.3 --- High Dose Implanted Samples --- p.61 / Chapter 4.3.1 --- RBS --- p.62 / Chapter 4.3.2 --- Phase Formation and Crystal Structures --- p.66 / Chapter 4.3.2-1 --- Phase Evolution with Annealing Temperature --- p.67 / Chapter 4.3.2-2 --- Grain Size of Implanted Samples --- p.70 / Chapter 4.3.3 --- Magnetic Properties --- p.72 / Chapter 4.3.3-1 --- M-H Characteristics --- p.73 / Chapter 4.3.3-2 --- Coercivity Against Annealing Temperature --- p.74 / Chapter 4.3.3-3 --- Low Temperature Measurements --- p.79 / Chapter 4.3.3-4 --- Coercivity against annealing time --- p.79 / Chapter 4.3.4 --- Microstructure --- p.84 / Conclusion --- p.88 / Appendices --- p.90 / Bibliolography --- p.95 / Publications --- p.98
29

Electrostatic depositional control of particles by a novel electrogasdynamic method and by ionic bombardment in a mono-ionized field.

Coffee, Ronald Alan. January 1973 (has links)
Thesis--Ph. D., University of Hong Kong. / Mimeographed.
30

ION-INDUCED PROCESSES IN OPTICAL COATINGS (BOMBARDMENT, THIN FILMS).

SAXE, STEVEN GARY. January 1985 (has links)
Nearly all the deficiencies of conventional vacuum evaporated coatings trace to a single physical property of condensed films: low packing density. One way to increase packing density is to bombard the growing film with ions during deposition, called ion-assisted deposition (IAD). The beginning chapters of this dissertation analyze IAD as a perturbation of the conventional vacuum evaporation process. The experimental chapters begin with an examination of the effect on moisture penetration behavior of oxygen-ion bombarding completed optical filters. Moisture adsorption and desorption is retarded after bombardment in filters composed of titania and silica, but not in those of zirconia and silica. Bombardment evidently induces a crystalline-to-amorphous transition in titania, causing the surface to swell and occluding the pores. The transition in zirconia is the reverse, and no impediment to moisture appears. Argon-ion-assisted magnesium fluoride (MgF₂) can show ultraviolet (UV) absorption. The primary mechanism is probably the formation of F-centers (single fluorine-ion vacancies), although an unsaturated oxygen bond may also be responsible. Absorption can be removed by baking and often by irradiation with UV. After baking, fluorine is lost and replaced by oxygen. Absorption-free MgF₂ films can be deposited by minimizing the substrate temperature and bombardment flux. Ion-assisted films contain up to 2% argon and up to 170 parts-per-million of tungsten from the ion gun filaments. They show a slightly higher refractive index, are much less porous, and are much more resistant to damage by abrasion and exposure to fluorine gas. Ion-assisted aluminum oxide (alumina, Al₂O₃) films show a small increase in UV absorption after argon-ion bombardment; however, a mixture of argon and oxygen ions avoids the problem. Excess oxygen is often incorporated into alumina films, and depresses both the mass density and the refractive index. IAD increases refractive index and decreases porosity. Ion-assisted alumina films are somewhat more stable in humid environments. Ion-assisted deposition has been shown by this study to cause substantial improvements in many of the physical and some of the optical and chemical properties of evaporated magnesium fluoride and aluminum oxide films.

Page generated in 0.0631 seconds