• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation into the extended capabilities of the new DPS-4D ionosonde

Ssessanga, Nicholas January 2011 (has links)
The DPS-4D is the latest version of digital ionosonde developed by the UMLCAR (University of Massachusetts in Lowell Center for Atmospheric Research) in 2008. This new ionosonde has advances in both the hardware and software which allows for the promised advanced capabilities. The aim of this thesis was to present results from an experiment undertaken using the Hermanus DPS-4D (34.4°S 19.2°E, South Africa), the first of this version to be installed globally, to answer a science question outside of the normally expected capabilities of an ionosonde. The science question posed focused on the ability of the DPS-4D to provide information on day-time Pc3 pulsations evident in the ionosphere. Day-time Pc3 ULF waves propagating down through the ionosphere cause oscillations in the Doppler shift of High Frequency (HF) radio transmissions that are correlated with the magnetic pulsations recorded on the ground. Evidence is presented which shows that no correlation exists between the ground magnetic pulsation data and DPS-4D ionospheric data. The conclusion was reached that although the DPS-4D is more advanced in its eld of technology than its predecessors it may not be used to observe Pc3 pulsations.
2

Using co-located radars and instruments to analyse ionespheric events over South Africa

Athieno, Racheal January 2012 (has links)
Space weather and its effect on technological systems are important for scientific research. Developing an understanding of the behaviour, sources and effects of ionospheric events form a basis for improving space weather prediction. This thesis attempts to use co-located radars and instruments for the analysis of ionospheric events over South Africa. The HF Doppler radar, ionosonde, Global Positioning System (GPS) and GPS ionospheric scintillation monitor (GISTM) receivers are co-located in Hermanus (34.4°S, 19.2°E), one of the observatories for the space science directorate of the South African National Space Agency (SANSA). Data was obtained from these radars and instruments and analysed for ionospheric events. Only the Hermanus station was selected for this analysis, because it is currently the only South African station that hosts all the mentioned radars and instruments. Ionospheric events identified include wave-like structures, Doppler spread, sudden frequency deviations and ionospheric oscillations associated with geomagnetic pulsations. For the purpose of this work, ionospheric events are defined as any unusual structures observed on the received signal and inferred from observations made by the HF Doppler radar. They were identified by visual inspection of the Doppler shift spectrograms. The magnitude and nature of the events vary, depending on their source and were observed by all, some or one instrument. This study suggests that the inclusion of a wider data coverage and more stations in South Africa merit consideration, especially since plans are underway to host a co-located radar network similar to that in Hermanus at at least three additional observatory sites in South Africa. This study lays a foundation for multi-station co-located radar and instrument observation and analysis of ionospheric events which should enhance the accuracy of space weather and HF communication prediction.

Page generated in 0.0625 seconds