• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Crack propagation in high chromium white cast iron

Crepeau, Paul Noles 12 1900 (has links)
No description available.
2

Observations on the fracture of hypoeutectic, high chromium white cast irons

Gieseke, Brian G. 08 1900 (has links)
No description available.
3

Fracture toughness of coral graphite cast iron

Westphal, Mark Emil 05 1900 (has links)
No description available.
4

Micromechanical Simulation of Fatigue in Nodular Cast Iron

Lukhi, Mehul 19 November 2020 (has links)
In the present thesis, fatigue behavior of nodular cast iron (NCI) is investigated using micromechanical simulations. An elastic-plastic porous material experiences an increase in a void volume fraction with each cycle of loading. This is called void ratchetting. The hypothesis of this thesis is to explain the fatigue failure of NCI using void ratchetting mechanism. The strain-life, stress-life, notch support effect, and fatigue crack growth are studied using the micromechanical simulations. In all these studies, matrix material is defined as an elastic-plastic with isotropic/kinematic hardening. No damage law is used to define material degradation. The axisymmetric cell model is developed to study strain-life and stress-life approaches for fatigue. The cell model is subjected to cyclic loading and cycle by cycle simulations are carried out until failure. The failure of the cell model is defined based on the drop in the macroscopic response of the cell model. The notch support effect is investigated using a 2D plane strain model within stress-life concept. From the simulation results, strain-life and stress-life curves are extracted, and they are in qualitative and quantitative agreement with experimental data collected from literature. The fatigue crack growth is studied using a micromechanical cell model under small scale yielding conditions. The graphite particles are considered as voids, and they are resolved discretely in fracture process zone. The region outside of the fracture process zone is considered as a homogenized medium. When positive alternating loads are applied, ligaments in the fracture process zone show ratchetting behavior, which is responsible for an effective fatigue crack growth. This mechanism is relevant for the fatigue crack growth in NCI. The 2D plane strain boundary layer model is able to predict the effect of load ratio on threshold for the fatigue crack growth and the fatigue crack growth rate. The fatigue crack growth rate curves obtained from the simulations are compared with experimental data. It is essential to note that the void ratchetting (plastic collapse of the intervoid ligaments) is a crucial mechanism in NCI and more focus should be given to this mechanism as it is simple to implement and gives satisfying simulation results.

Page generated in 0.0743 seconds