• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Examination of an Inducible Expression System for Limiting Iron Availability During Chlamydia Trachomatis Infection

Dill, Brian D., Raulston, Jane E. 01 July 2007 (has links)
The obligate intracellular bacterium Chlamydia trachomatis requires iron in order to complete its developmental cycle. Addition of an iron-chelating drug, Desferal (deferoxamine mesylate), to infected cell culture causes Chlamydia to enter persistence. Here, we explore the ability of a stably-transfected cell line with inducible over-expression of the eukaryotic iron efflux protein ferroportin to starve C. trachomatis serovar E for iron. Ferroportin-induced iron removal is perhaps a more direct method of removing iron from the intracellular compartment versus exposure to an exogenous chemical chelator. Following induction, ferroportin-green fluorescent protein (Fpn-GFP) was detected in the plasma membrane, and cells expressing Fpn-GFP remained viable throughout the timescale required for Chlamydia to complete its developmental cycle. Following Fpn-GFP induction in infected cells, chlamydial infectivity remained unchanged, indicating chlamydiae were not in persistence. Ferritin levels indicate only a small decrease in cellular iron following Fpn-GFP expression relative to cultures exposed to Desferal. These data indicate that expression of Fpn-GFP in chlamydiae-infected cells is not capable of reducing iron below the threshold concentration needed to cause chlamydiae to enter persistence.
2

Identification of Chlamydial Iron-Responsive Proteins during Intracellular Growth.

Dill, Brian D. 12 August 2008 (has links) (PDF)
Chlamydia trachomatis is an obligate intracellular bacterium and the most prevalent cause of bacterial sexually transmitted disease. Genital chlamydial infections, marked by chronic, intense inflammation, can lead to genital tissue scarring and infertility and is a contributing factor to development of pelvic inflammatory disease and ectopic pregnancy. Iron is required as a cofactor for numerous highly conserved pathways, and nearly all studied organisms rely on iron for growth. In response to iron restriction, the chlamydial developmental cycle arrests at the intracellular reticulate body stage, resulting in a phenomenon termed persistence. Persistence likely plays a role in chlamydial pathogenesis through the expression of virulence factors and antigens in addition to sustaining chronic infection; however, little is known concerning how chlamydiae respond to iron limitation at the molecular level, and no systems for iron acquisition have been identified in Chlamydia. This dissertation presents an investigation into the chlamydial response to iron restriction. Chlamydial heat shock protein 60 (cHsp60) has been implicated in development of the more severe disease sequelae and has been found to increase in expression following iron restriction; however, three cHsp60 homologues were identified following the sequencing of the chlamydial genome. Here, iron restriction is shown to increase expression of cHsp60-2 but not the two other homologs, cHsp60-1 or -3. Next, in order to investigate an alternate model for restricting iron availability to chlamydiae, a cell line with inducible expression of recombinant ferroportin, a eukaryotic iron efflux protein, was examined. Lastly, 10 chlamydial proteins differentially expressed during growth in iron-restricted host cells were identified by proteomic analysis of radiolabeled proteins followed by mass spectrometry analysis; transcripts encoding 5 iron responsive proteins were examined across a timecourse of infection and revealed increased transcript levels at 18 and/or 24 hours post infection. Together, these studies have examined the molecular response of chlamydiae to reduced iron availability and have underlined the importance for pathways involved in protection against oxidative damage and adaptation to stress.
3

Understanding molecular aspects of catfish-pathogen interactions

Dumpala, Pradeepkumar Reddy 07 August 2010 (has links)
The catfish industry suffers losses primarily due to enteric septicemia of catfish and columnaris disease caused by Edwardsiella ictaluri and Flavobacterium columnare, respectively. Understanding the host-pathogen interactions is vital for prevention and eradication of these diseases. Hence, the overall objective of this study was to analyze whole cell proteomes of these two bacteria, and to determine the changes in E. ictaluri protein expression against in vitro iron-restriction and host serum treatment. High-throughput proteomic analysis of these bacteria was conducted using two-dimensional liquid chromatography followed by electrospray ionization tandem mass spectrometry (2-D LC ESI MS/MS) and two-dimentional gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-oflight mass spectrometry (2-DE MALDI TOF/TOF). Identified proteins were clustered into functional groups using clusters of orthologous groups, and subcellular locations as well as possible functional relationships were determined. A total of 788 unique E. ictaluri and 621 unique F. columnare proteins were identified, which represented 12 and 28 pathways, respectively. Vertebrate hosts tend to chelate free iron of their body and make the environment hostile for bacteria. Hence, reduced availability of iron may cause significant stress for pathogens and is considered a signal that leads to alteration in virulent gene expression. Similarly, E. ictaluri might use the catfish blood stream effectively for quick systemic invasion. Hence, exposure to catfish serum components might reveal the ability of E. ictaluri to protect against host defense mechanisms. Using two-dimensional difference gel electrophoresis, responses of E. ictaluri due to in vitro iron-restriction and host serum treatment were determined. A total of 50 and 19 proteins were identified to be differentially expressed due to in vitro iron-restriction and catfish serum treatment, respectively. Among the differentially expressed proteins, several putative virulent determinants, immunogenic proteins, chaperones, and housekeeping genes were noted. To initiate functional studies, four differentially expressed E. ictaluri genes (lamB, glyS, malE, and sdhA) were mutated by inrame deletion. Results from this study provided experimental evidence for many predicted proteins. In addition, identification of differentially expressed proteins provided targets for further functional analysis, which could help elucidate pathogenic mechanisms of E. ictaluri.

Page generated in 0.1071 seconds