• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Fundamental Investigation into Intermetallic Formation and Growth in the Aluminum-Iron System using Resistance-based Diffusion Couples

Eff, Michael N. 23 October 2019 (has links)
No description available.
2

Effect of N2–H2 Ratio during Conventional Plasma Nitriding of Intermetallic FeAl40 Alloy on Electrochemical Corrosion Parameters in Sulphuric Acid

Le, Ngoc Minh, Mandel, Marcel, Krüger, Lutz, Biermann, Horst, Dalke, Anke 10 February 2025 (has links)
The intermetallic alloy FeAl40 was plasma nitrided at 575 ∘C for 4 h while varying the N2–H2 gas mixture with nitrogen contents fN2 between 0.1 and 0.9. The effect of the gas mixture on the resulting structure of the nitrided FeAl40 and the associated electrochemical corrosion behaviour in a 0.25 M H2SO4 (pH = 0.3) electrolyte were investigated using different complementary analytical methods such as scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray spectroscopy, electron probe microanalysis (EPMA), electrochemical polarisation and electrochemical impedance spectroscopy. Nitriding significantly changed the corrosion mechanism of FeAl40 alloys in acidic environments, ranging from consistently high material loss in untreated base material to strongly inhibited material loss. This phenomenon was the result of a corrosion product layer formed on nitrided FeAl40 during the corrosion process. Therefore, plasma nitriding reduced the corrosion rate to about 5–7 mm/year compared with 22 mm/year of the untreated FeAl40 base material. A high nitrogen content in the N2–H2 plasma of more than fN2 = 0.3 ensured the formation of protective nitrided layers on FeAl40. In addition, an approach to explaining the effect of the nitrided layer on FeAl materials was presented on the basis of thermodynamic considerations.

Page generated in 0.0466 seconds