• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Drain for gain making water management worth its salt : subsurface drainage practices in irrigated agriculture in semi-arid and arid regions /

Ritzema, Hendrik Pieter. January 1900 (has links) (PDF)
Proefschrift (Ph.D) -- Wageningen University, 2009. / Description based on print version record.
2

An evaluation of modified pervious pavements for water harvesting for irrigation purposes

Nnadi, E. O. January 2009 (has links)
The pervious pavement system has been identified as an effective source control device capable of removing urban stormwater pollution by trapping pollutants within the system and biodegradation. Recent studies have further demonstrated that the pervious pavement system could be used as a source of renewable energy capable of reducing household energy bill by about 80%. In view of ever increasing demand for water and the continued reduction in available fresh water resources in the world, stormwater has been recognized as a potential valuable source of water which could be harnessed. The overall aim of this multi disciplinary research was to evaluate the suitability of a modified pervious pavement system (PPS) for water harvesting and re-use, particularly focussing on potential third world applications and taking advantage of the latest developments in materials that are available for such applications. The aim was a holistic one in which water re-use was examined in terms of both the potential advantages from an irrigation point of view without ignoring the very important public health concerns that are often of concern when water is stored in circumstances which do not fit the normally used criteria for potable supplies. The results of this study confirmed the pollution control capability of the porous pavement system as earlier determined by previous studies. Also, a novel experimental rig was designed to reproducibly create very high and realistic rainfall events over model pavement structures. Furthermore, the performance of a new geotextile, Inbitex Composite® in the pervious pavement system was determined for the first time. Furthermore, this study also tested for the first time, the performance of a pervious pavement system modified by the incorporation of Inbitex Composite® geotextile with slits and made prescriptions as to how this new geotextile could be best installed in a modified pervious pavement system in order to achieve high infiltration without compromising pollution control. This study tested the practical use of the pervious pavement system for water harvesting and storage for reuse in irrigation. In order to achieve this, the author took what could be considered as a holistic approach to water quality issues and determined the chemical, electrochemical and microbiological quality of water stored in the system as well as investigated the public health concern of the potential of pathogenic organisms in waters stored in unconventional water storage system as the pervious pavement system. It also determined that the pervious pavement system have the capability to recycle water with physical, chemical and microbiological qualities that will meet international standards for irrigation and that the system does not offer a conducive environment for potential pathogenic organisms if contamination incident occurs from adjoining areas. This study also became the first to practically relate Sustainable Urban Drainage System (SUDS) to agricultural benefit by demonstrating how a SUDS device (pervious pavement system) could be used in addition to its urban drainage control role, as a source of supply of high quality irrigation water to cultivate crops fit for human and animal consumption despite high application of pollutants. This study determined contrary to the observation of earlier studies that the use of slow-release iv fertilizer could lead to eutrophication problems in cases where the water is channeled to natural water courses. Furthermore, active response of potential pathogenic bacteria to the presence of slow-release fertilizer was observed in this study. This raises a huge question on the need to add fertilizer to the pervious pavement system. Coupe, (2004) had demonstrated that oil degrading microbes would respond positively to food sources in the system and hence, there was no significant need for simulation by nutrient addition, the author concluded in the study presented here that fertilizer addition should only be conducted if the waters are to be used for irrigation where the nutrients would be beneficial to the plants and that even in this case, the microbiological water quality should be constantly monitored and the addition suspended if the risk of contamination from adjoining areas is high.
3

Water and Energy Balance of a Riparian and Agricultural Ecosystem along the Lower Colorado River

Taghvaeian, Saleh 01 May 2011 (has links)
Spatially-distributed water consumption was modeled over a segment of the Lower Colorado River, which contains irrigated agricultural and Tamarisk-dominated riparian ecosystems. For the irrigation scheme, distributed evapotranspiration data were analyzed in conjunction with point measurements of precipitation and surface flow in order to close daily and annual water balance. The annual closure error was less than 1% of the total water diversion to the area. In addition, it was found that the soil water storage component of the water balance cannot be neglected if the analysis is performed over time frames shorter than annual (e.g. growing season). Water consumption was highly uniform within agricultural fields, and all the full-cover fields were transpiring close to their potential rates. Mapping several new and existing drainage performance indicators showed that neither soil salinization nor water-logging would be of concern in this irrigation scheme. However, the quality of high-volume return flow must be studied, especially since the degraded water quality of the western US rivers is believed to act in favor of the invasive riparian species in outcompeting native species. Over the Tamarisk forest, the remotely-sensed evapotranspiration estimates were higher than the results of an independent groundwater-based method during spring and winter months. This was chiefly due to the fixed satellite overpass time, which happened at low sun elevation angles in spring and winter and resulted in a significant presence of shadows in the satellite scene and consequently a lower surface temperature estimate, which resulted in a higher evapotranspiration estimate using the SEBAL model. A modification based on the same satellite imagery was proposed and found to be successful in correcting for this error. Both water use and crop coefficients of Tamarisk estimated by the two independent methods implemented in this study were significantly lower than the current approximations that are used by the US Bureau of Reclamation in managing the Lower Colorado River. Studying the poorlyunderstood stream-aquifer-phreatophyte relationship revealed that diurnal and seasonal groundwater fluctuations were strongly coupled with the changes in river stage at close distances to the river and with the Tamarisk water extraction at further distances from the river. The direction of the groundwater flow was always from the river toward the riparian forest. Thus the improved Tamarisk ET estimates along with a better understanding of the coupling between the river and the riparian aquifer will allow the Bureau of Reclamation to re-asses their reservoir release methodology and improve efficiency and water savings.
4

Application of Direct Osmosis: Possibilities for Reclaiming Wellton-Mohawk Drainage Water

Moody, C. D., Kessler, J. O. 12 April 1975 (has links)
From the Proceedings of the 1975 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 11-12, 1975, Tempe, Arizona / A direct osmosis plant can reclaim twenty to thirty thousand acre feet of Wellton-Mohawk brackish drainage water using no more nitrogen fertilizer than is normally used in the Yuma, Coachella valley, Imperial Valley and the bordering Mexican areas. On a per-acre basis ammonium sulfate-driven direct osmosis can reclaim about one percent of the total irrigation requirement from 3000 ppm brackish water. In addition to the ammonium sulfate-driven direct osmosis efficiency, the by-product energy recovery of the manufacture of the fertilizer and the low technology inherent in direct osmosis processes make direct osmosis an appealing water reclaiming process.

Page generated in 0.1293 seconds