• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 533
  • 393
  • 124
  • 37
  • 36
  • 35
  • 33
  • 19
  • 17
  • 12
  • 6
  • 6
  • 6
  • 4
  • 3
  • Tagged with
  • 1424
  • 507
  • 364
  • 248
  • 223
  • 188
  • 146
  • 141
  • 130
  • 129
  • 124
  • 92
  • 86
  • 83
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

The Development of a Novel Mouse Model of Transient Global Cerebral Ischemia

Hua, Fang, Ma, Jing, Li, Yan, Ha, Tuanzhu, Xia, Yeling, Kelley, Jim, Williams, David L., Browder, I. William, Schweitzer, John B., Li, Chuanfu 29 May 2006 (has links)
A reproducible model of global cerebral ischemia in mice is essential for elucidating the molecular mechanism(s) of neuronal damage induced by cerebral ischemia/reperfusion injury. In the present study, we developed a mouse model of transient global ischemia induced by occlusion of the bilateral common carotid arteries and the left subclavian artery together with right subclavian artery (RSA) stenosis (CSOSS) under controlled ventilation in C57BL/10ScSn mice. The mean arterial blood pressure was maintained in the physiological range. The cortical cerebral blood flow was reduced to less than 10% of the pre-ischemic value. Twelve minutes of global ischemia induced brain damage in several brain structures. The neuropathological score in the hippocampus CA1 region was 1.7, 3.5 and 3.7 following reperfusion for 24, 48 and 72 h, respectively. Less extensive damage was seen in the dentate gyrus and cortical regions, compared with the CA1 region. Damage was observed in these regions 24 h after ischemia and was not different between 48 and 72 h post-ischemia. Results indicated that this global ischemia model possessed several advantages, including reproducible cerebral ischemic insult, sufficient reperfusion and low mortality rate (10%), and could be used for studies on cerebral ischemia/reperfusion injury in mice.
172

Modulating Toll-Like Receptor Mediated Signaling by (1→3)-β-D- Glucan Rapidly Induces Cardioprotection

Li, Chuanfu, Ha, Tuanzhu, Kelley, Jim, Gao, Xiang, Qiu, Yufeng, Kao, Race L., Browder, William, Williams, David L. 15 February 2004 (has links)
Objective: Immune and inflammatory signaling pathways, initiated by the innate response, are involved in myocardial ischemia/reperfusion (I/R) injury. Toll-like receptor (TLR) mediated MyD88-dependent NFκB pathways play a role in the induction of innate immunity. We have reported that glucan phosphate (GP) improved survival in experimental sepsis, which correlated with decreased tissue NFκB activation. In the present study, we report that GP rapidly induced cardioprotection against I/R injury in vivo. Methods: Sprague-Dawley rats were pretreated with GP (40 mg/kg, i.p) 1 h before 45 min of ligation of the left anterior descending coronary followed by reperfusion for 4 and 24 h. Infarction size was examined by triphenyltetrazolium chloride (TTC) staining. NFκB activation was analyzed by electrophoretic mobility shift assay (EMSA). IκB kinase-β (IKKβ), IL-1 receptor-associated kinase (IRAK) and Phosphoinositide 3-kinase (PI3K) activities were determined by kinase assay with appropriate substrates. Association of TLR4 with MyD88 or with PI3K p85 was assessed by immunoprecipitation with anti-TLR4 followed by immunoblotting with anti-MyD88 or anti-p85. Results: GP treatment reduced infarct size by 47% in rat hearts subjected to reperfusion for 4 h and by 50% following reperfusion for 24 h. The same protective effect was observed when GP was administrated 5 min after initiation of ischemia. The mechanisms of GP induced cardioprotection involve decreased association of TLR4 with MyD88, inhibition of I/R induced IRAK and IKKβ activity and decreased NFκB activity. In addition, GP increased TLR4 phosphotyrosine, resulting in increasing PI3K/Akt activity in the myocardium, which correlated with decreased cardiac myocyte apoptosis following I/R. Conclusion: The results suggest that activation of the TLR mediated MyD88-dependent NFκB signaling pathway may play an important role in myocardial I/R injury, while stimulation of the PI3K/Akt signaling could serve a protective role. The data indicates that GP treatment shifts the TLR mediated activation signal in I/R from a predominantly NFκB pathway to a predominant PI3K/Akt signaling pathway.
173

Protein Kinase Activation and Myocardial Ischemia/Reperfusion Injury

Armstrong, Stephen C. 15 February 2004 (has links)
Myocardial ischemia and ischemia/reperfusion activate several protein kinase pathways. Protein kinase activation potentially regulates the onset of myocardial cell injury and the reduction of this injury by ischemic and pharmacologic preconditioning. The primary protein kinase pathways that are potentially activated by myocardial ischemia/reperfusion include: the MAP kinases, ERK 1/2, JNK 1/2, p38 MAPKα/β; the cell survival kinase, Akt; and the sodium-hydrogen exchanger (NHE) kinase, p90RSK. The literature does not support a role for ischemia/reperfusion in the activation of the tyrosine kinases, Src and Lck, or the translocation and activation of PKC. This review will detail the role of these protein kinases in the onset of myocardial cell death by necrosis and apoptosis and the reduction of this injury by preconditioning.
174

Ischemic Loss of Sarcolemmal Dystrophin and Spectrin: Correlation With Myocardial Injury

Armstrong, Stephen C., Latham, Carole A., Shivell, Christine L., Ganote, Charles E. 01 January 2001 (has links)
Sarcolemmal blebbing and rupture are prominent features of irreversible ischemic myocardial injury. Dystrophin and spectrin are sarcolemmal structural proteins. Dystrophin finks the transmembrane dystroglycan complex and extracellular laminin receptors to intracellular F-actin. Spectrin forms the backbone of the membrane skeleton confering an elastic modulus to the sarcolemmal membrane. An ischemic loss of membrane dystrophin and spectrin, in ischemically pelleted rabbit cardiomyocytes or in vivo 30-45 rain permanently ischemic. LAD-ligated hearts, was detected by immunofluorescence with monoclonal antibodies. Western blots of light and heavy microsomal vesicles and Triton-extracted membrane fractions from ischemic myocytes demonstrated a rapid loss of dystrophin coincident with sub-sarcolemmal bleb formation, subsequent to a hypotonic challenge. The loss of spectrin from purified sarcolemma of autolysed rabbit heart, and both isolated membrane vesicles and Triton solubilized membrane fractions of ischemic cardiomyocytes correlated linearly with the onset of osmotic fragility as assessed by membrane rupture, subsequent to a hypotonic challenge. In contrast to the ischemic loss of dystrophin and spectrin from the membrane, the dystrophin-associated proteins. α-sarcoglycan and β-dystroglycan and the integral membrane protein, sodium-calcium exchanger, were maintained in the membrane fraction of ischemic cells as compared to oxygenated cells. Preconditioning protected cells, but did not significantly alter ischemic dystrophin or spectrin translocation. This previously unrecognized loss of sarcolemmal dystrophin and spectrin may be the molecular basis for sub-sarcolemmal bleb formation and membrane fragility during the transition from reversible to irreversible ischemic myocardial injury.
175

Overexpression of Bcl-2 Attenuates Apoptosis and Protects Against Myocardial I/R Injury in Transgenic Mice

Chen, Zhongyi, Chua, Chu Chang, Ho, Ye Shih, Hamdy, Ronald C., Chua, Balvin H.L. 01 January 2001 (has links)
To test whether the antiapoptotic protein Bcl-2 prevents apoptosis and injury of cardiomyocytes after ischemia-reperfusion (I/R), we generated a line of transgenic mice that carried a human Bcl-2 transgene under the control of a mouse α-myosin heavy chain promoter. High levels of human Bcl-2 transcripts and 26-kDa Bcl-2 protein were expressed in the hearts of transgenic mice. Functional recovery of the transgenic hearts significantly improved when they were perfused as Langendorff preparations. This protection was accompanied by a threefold decrease in lactate dehydrogenase (LDH) released from the transgenic hearts. The transgenic mice were subjected to 50 min of ligation of the left descending anterior coronary artery followed by reperfusion. The infarct sizes, expressed as a percentage of the area at risk, were significantly smaller in the transgenic mice than in the nontransgenic mice (36.6 ± 5 vs 69.9 ± 7.3%, respectively). In hearts subjected to 30 min of coronary artery occlusion followed by 3 h of reperfusion, Bcl-2 transgenic hearts had significantly fewer terminal deoxynucleodidyl-transferase nick-end labeling-positive or in situ oligo ligation-positive myocytes and a less prominent DNA fragmentation pattern: Our results demonstrate that overexpression of Bcl-2 renders the heart more resistant to apoptosis and I/R injury.
176

Luminal injection of hydrogen-rich solution attenuates intestinal ischemia-reperfusion injury in rats / ラットにおいて水素水腸管内投与は小腸虚血再灌流障害を軽減する

Shigeta, Takanobu 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18865号 / 医博第3976号 / 新制||医||1008(附属図書館) / 31816 / 京都大学大学院医学研究科医学専攻 / (主査)教授 伊達 洋至, 教授 坂井 義治, 教授 福田 和彦 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
177

BRONCHODILATOR INHALATION DURING EVLP IMPROVES POST-TRANSPLANT GRAFT FUNCTION FOLLOWING WARM ISCHEMIA / 体外肺潅流中の気管支拡張薬の吸入は、温虚血後の移植後グラフト肺機能を改善する

Hijiya, Kyoko 23 January 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20082号 / 医博第4175号 / 新制||医||1018(附属図書館) / 33198 / 京都大学大学院医学研究科医学専攻 / (主査)教授 小池 薫, 教授 湊谷 謙司, 教授 山下 潤 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
178

Pirfenidone alleviates lung ischemia-reperfusion injury in a rat model / ピルフェニドンは肺虚血再灌流障害を軽減する

Saito, Masao 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21627号 / 医博第4433号 / 新制||医||1033(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 平井 豊博, 教授 松原 和夫, 教授 羽賀 博典 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
179

An Updated Review on Myocardial Bridging

Murtaza, Ghulam, Mukherjee, Debabrata, Gharacholou, Shahyar M., Nanjundappa, Aravinda, Lavie, Carl J., Khan, Abdul Ahad, Shanmugasundaram, Madhan, Paul, Timir K. 01 September 2020 (has links)
Myocardial bridging is a congenital coronary anomaly with normal epicardial coronary artery taking an intra-myocardial course also described as tunneled artery. The majority of patients with this coronary anomaly are asymptomatic and generally it is a benign condition. However, it is an important cause of myocardial ischemia, which may lead to anginal symptoms, acute coronary syndrome, cardiac arrhythmias and rarely sudden cardiac death. There are numerous studies published in the recent past on understanding the pathophysiology, diagnostic and management strategies of myocardial bridging. This review highlights some of the recent updates in the diagnosis and management of patients with myocardial bridging. We discuss the role of various non-invasive and invasive diagnostic methods to evaluate functional significance of bridging. In addition, role of medical therapy such as beta-blockers, percutaneous coronary intervention with stents/bioresorbable scaffolds and surgical unroofing in patients unresponsive to medical therapy is highlighted as well.
180

Investigation of the mRNA Binding Protein Human Antigen R (HuR) in Cardiomyocyte Hypertrophy and the Innate Immune Response during Cardiac Ischemia/Reperfusion Injury

Slone, Samuel January 2022 (has links)
No description available.

Page generated in 0.0447 seconds