• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 541
  • 393
  • 124
  • 37
  • 36
  • 35
  • 33
  • 19
  • 17
  • 12
  • 7
  • 6
  • 6
  • 4
  • 3
  • Tagged with
  • 1433
  • 510
  • 365
  • 251
  • 225
  • 188
  • 146
  • 142
  • 131
  • 130
  • 126
  • 94
  • 86
  • 83
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
791

Progression of Myocardial Ischemia Leads to Unique Changes in Immediate-Early Gene Expression in the Spinal Cord Dorsal Horn

Saddic, Louis A., Howard-Quijano, Kimberly, Kipke, Jasmine, Kubo, Yukiko, Dale, Erica A., Hoover, Donald, Shivkumar, Kalyanam, Eghbali, Mansoureh, Mahajan, Aman 01 December 2018 (has links)
The pathological conse-quences of ischemic heart disease involve signaling through the autonomic nervous system. Although early activation may serve to maintain hemodynamic stability, persistent aberrant sympathoexcitation contributes to the development of lethal arrhythmias and heart failure. We hypothesized that as the myocardium reacts and remodels to ischemic injury over time, there is an analogous sequence of gene expression changes in the thoracic spinal cord dorsal horn, the processing center for incoming afferent fibers from the heart to the central nervous system. Acute and chronic myocardial ischemia (MI) was induced in a large animal model of Yorkshire pigs, and the thoracic dorsal horn of treated pigs, along with control nonischemic pigs, was harvested for transcriptome analysis. We identified 32 differentially expressed genes between healthy and acute ischemia cohorts and 46 differentially expressed genes between healthy and chronic ischemia cohorts. The canonical immediate-early gene c-fos was upregulated after acute MI, along with fosB, dual specificity phosphatase 1 and 2 (dusp1 and dusp2), and early growth response 2 (egr2). After chronic MI, there was a persistent yet unique activation of immediate-early genes, including fosB, nuclear receptor subfamily 4 group A members 1±3 (nr4a1, nr4a2, and nr4a3), egr3, and TNF-β-induced protein 3 (tnfaip3). In addition, differentially expressed genes from the chronic MI signature were enriched in pathways linked to apoptosis, immune regulation, and the stress response. These findings support a dynamic progression of gene expression changes in the dorsal horn with maturation of myocardial injury, and they may explain how early adaptive autonomic nervous system responses can maintain hemodynamic stability, whereas prolonged maladaptive signals can predispose patients to arrhythmias and heart failure. NEW & NOTEWORTHY Activation of the autonomic nervous system after myocardial injury can provide early cardiovascular support or prolonged aberrant sympathoexcitation. The later response can lead to lethal arrhythmias and heart failure. This study provides evidence of ongoing changes in the gene expression signature of the spinal cord dorsal horn as myocardial injury progresses over time. These changes could help explain how an adaptive nervous system response can become maladaptive over time.
792

The Endocannabinoid System and Heart Disease: The Role of Cannabinoid Receptor Type 2

Fulmer, Makenzie L., Thewke, Douglas P. 01 January 2018 (has links)
Decades of research has provided evidence for the role of the endocannabinoid system in human health and disease. This versatile system, consisting of two receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and metabolic enzymes has been implicated in a wide variety of disease states, ranging from neurological disorders to cancer. CB2 has gained much interest for its beneficial immunomodulatory role that can be obtained without eliciting psychotropic effects through CB1. Recent studies have shed light on a protective role of CB2 in cardiovascular disease, an ailment which currently takes more lives each year in Western countries than any other disease or injury. By use of CB2 knockout mice and CB2-selective ligands, knowledge of how CB2 signaling affects atherosclerosis and ischemia has been acquired, providing a major stepping stone between basic science and translational clinical research. Here, we summarize the current understanding of the endocannabinoid system in human pathologies and provide a review of the results from preclinical studies examining its function in cardiovascular disease, with a particular emphasis on possible CB2-targeted therapeutic interventions to alleviate atherosclerosis.
793

Thoracic Spinal Cord and Cervical Vagosympathetic Neuromodulation Obtund Nodose Sensory Transduction of Myocardial Ischemia

Salavatian, Siamak, Beaumont, Eric, Gibbons, David, Hammer, Matthew, Hoover, Donald B., Armour, J. Andrew, Ardell, Jeffrey L. 01 December 2017 (has links)
Background Autonomic regulation therapy involving either vagus nerve stimulation (VNS) or spinal cord stimulation (SCS) represents emerging bioelectronic therapies for heart disease. The objective of this study was to determine if VNS and/or SCS modulate primary cardiac afferent sensory transduction of the ischemic myocardium. Methods Using extracellular recordings in 19 anesthetized canines, of 88 neurons evaluated, 36 ventricular-related nodose ganglia sensory neurons were identified by their functional activity responses to epicardial touch, chemical activation of their sensory neurites (epicardial veratridine) and great vessel (descending aorta or inferior vena cava) occlusion. Neural responses to 1 min left anterior descending (LAD) coronary artery occlusion (CAO) were then evaluated. These interventions were then studied following either: i) SCS [T1-T3 spinal level; 50 Hz, 90% motor threshold] or ii) cervical VNS [15–20 Hz; 1.2 × threshold]. Results LAD occlusion activated 66% of identified nodose ventricular sensory neurons (0.33 ± 0.08–0.79 ± 0.20 Hz; baseline to CAO; p < 0.002). Basal activity of cardiac-related nodose neurons was differentially reduced by VNS (0.31 ± 0.11 to 0.05 ± 0.02 Hz; p < 0.05) as compared to SCS (0.36 ± 0.12 to 0.28 ± 0.14, p = 0.59), with their activity response to transient LAD CAO being suppressed by either SCS (0.85 ± 0.39–0.11 ± 0.04 Hz; p < 0.03) or VNS (0.75 ± 0.27–0.12 ± 0.05 Hz; p < 0.04). VNS did not alter evoked neural responses of cardiac-related nodose neurons to great vessel occlusion. Conclusions Both VNS and SCS obtund ventricular ischemia induced enhancement of nodose afferent neuronal inputs to the medulla.
794

Exogenous Adipokine Peptide Resistin Protects Against Focal Cerebral Ischemia/Reperfusion Injury in Mice

Zhu, Jiangtao, Wu, Di, Zhao, Chenyu, Luo, Man, Hamdy, Ronald C., Chua, Balvin H.L., Xu, Xingshun, Miao, Zhigang 01 October 2017 (has links)
Previous studies have demonstrated that plasma resistin levels were increased in patients with acute ischemic stroke. However, the role of resistin after ischemic brain injury is still unclear. In this study, we investigated the protective effects of resistin on cerebral ischemia/reperfusion injury in a middle cerebral artery occlusion mouse model. We found that resistin (i.c.v.) significantly reduced infarct volume and improved neurological deficits after 45 min of ischemia and 24 h of reperfusion. Furthermore, our data demonstrate that intraperitoneal administration of resistin (10 µg/kg body weight) also had protective effects on infarct volume, indicating the crossing of resistin through the impaired BBB after ischemia injury. Resistin treatment reduced cleaved protein level of Poly(ADP-ribose)polymerase-1 (PARP-1), a marker of cellular apoptosis, showing the anti-apoptotic activity of resistin. Resistin increased the level of phosphorylated Akt after ischemic brain injury. The neuroprotective effect of resistin was partially reversed by a PI3K inhibitor wortmannin, demonstrating that the PI3K/Akt signal pathway is involved in the anti-apoptotic mechanisms of resistin. Finally, we found that resistin treatment improved neurological function recovery at 14 days after treatment, including balance ability and muscle strength. Given these findings, resistin may have therapeutic potential for the treatment of stroke.
795

Étude de l'effet de nouveaux ligands de la cyclophiline D sur le pore de transition de perméabilité mitochondrial et de leur effet protecteur / Effect of new cyclophilin D ligands on mitochondrial permeability transition pore opening

Panel, Mathieu 21 November 2018 (has links)
Les phénomènes d’ischémie-reperfusion sont rencontrés dans plusieurs situations physiopathologiques. Le seul traitement de l’ischémie repose sur une restauration précoce du flux sanguin. Paradoxalement, la reperfusion génère des lésions supplémentaires, appelées « lésions de reperfusion », dont la mitochondrie est un acteur majeur via l’ouverture du pore de transition de perméabilité mitochondrial (mPTP). L’ouverture du mPTP est principalement modulée par la cyclophiline D (CypD), une protéine de la matrice mitochondriale, dont l’inhibition pharmacologique par la cyclosporine A (CsA) permet de limiter l’ouverture du pore. Cette inhibition, obtenue in vitro et in vivo, permet de réduire les lésions de reperfusion. Néanmoins, de récents essais cliniques n’ont pas permis de confirmer ce bénéfice dans le cadre de l’infarctus du myocarde, soulignant la nécessité de développer de nouveaux inhibiteurs du mPTP. Dans ce travail, nous avons étudié l’effet de nouveaux ligands de la CypD sur l’ouverture du mPTP. Ces petites molécules innovantes, de structure radicalement différente de la CsA inhibent l’ouverture du mPTP de mitochondries isolées et le dérivé le plus actif, le C31, permet une inhibition plus efficace du mPTP que la CsA. Le C31 inhibe également le mPTP au niveau cellulaire, dans des hépatocytes primaires et dans des cardiomyocytes isolés. In vivo, le C31 atteint les mitochondries hépatiques et protège le foie dans un modèle d’ischémie-reperfusion hépatique. Cependant, la stabilité métabolique du C31 ne lui permet pas d’atteindre le cœur. La poursuite du développement de ces inhibiteurs pourrait aboutir à de nouveaux candidats pour protéger les organes des lésions de reperfusion. / Ischemia-reperfusion can occur in various pathophysiological situations such as myocardial infarction or organ transplantation. The only available treatment of ischemia relies on a timely reperfusion which paradoxically causes additional damage, so-called « reperfusion injury ». Mitochondria play a central role in this phenomenon through the opening of the mitochondrial permeability transition pore (mPTP) which extends cell death. mPTP opening is modulated by the matrix protein cyclophilin D (CypD). CypD inhibition by cyclosporin A (CsA), the most described CypD inhibitor, limits reperfusion injury in vivo. Nevertheless, recent clinical trials failed to recapitulate such protection in the context of myocardial infarction, emphasizing the urge to develop new mPTP inhibitors. Here, we investigated the effects of new CypD ligands on mPTP opening. We demonstrated that these small molecules unrelated to CsA are potent mPTP inhibitors and that the most active compound, C31, exhibited stronger mPTP-inhibiting properties as compared to CsA. C31 also inhibited mPTP opening in primary hepatocytes and isolated cardiomyocytes. In vivo, C31 reaches liver mitochondria and protects mitochondrial function in a hepatic ischemia-reperfusion model. Nevertheless, C31 metabolic stability hampers cardiac uptake of the compound. Further development of these new inhibitors might lead to interesting candidates to protect organs against ischemia-reperfusion injury.
796

Mitochondrial Reactive Oxygen Species (ROS): Which ROS is Responsible for Cardioprotective Signaling?

Garlid, Anders Olav 31 March 2014 (has links)
Mitochondria are the major effectors of cardioprotection by procedures that open the mitochondrial ATP-sensitive potassium channel (mitoKATP), including ischemic and pharmacological preconditioning. MitoKATP opening leads to increased reactive oxygen species (ROS), which then activate a mitoKATP-associated PKCε, which phosphorylates mitoKATP and leaves it in a persistent open state (Costa, ADT and Garlid, KD. Am J Physiol 295, H874-82, 2008). Superoxide (O2•-), hydrogen peroxide (H2O2), and hydroxyl radical (HO•) have each been proposed as the signaling ROS but the identity of the ROS responsible for this feedback effect is not known. Superoxide was excluded in earlier work on the basis that it does not activate PKCε and does not induce mitoKATP opening.To further examine the identity of the signaling ROS, respiring rat heart mitochondria were preincubated with ATP and diazoxide to induce the phosphorylation-dependent open state, together with agents that may interrupt feedback activation of mitoKATP by ROS scavenging or by blocking ROS transformations. Swelling assays of the preincubated mitochondria revealed that dimethylsulfoxide (DMSO), dimethylformamide (DMF), deferoxamine, trolox, and bromoenol lactone (BEL) each blocked the ROS-dependent open state but catalase did not interfere with this step. The lack of a catalase effect and the inhibitory effects of agents acting downstream of HO• excludes H2O2 as the endogenous signaling ROS and focuses attention on HO•. In support of the hypothesis that HO• is required, we also found that HO•-scavenging by DMF blocked cardioprotection by both ischemic preconditioning and diazoxide in the Langendorff perfused rat heart. HO• itself cannot act as a signaling molecule, because its lifetime is too short and it reacts immediately with nearest neighbor phospholipids and proteins. Therefore, these findings point to a product of phospholipid peroxidation, such as hydroperoxy-fatty acids. Indeed, this hypothesis was supported by the finding that hydroperoxylinoleic acid (LAOOH) opens the ATP-inhibited mitoKATP in isolated mitochondria. This effect was blocked by the specific PKCε inhibitor peptide εV1-2, showing that LAOOH activates the mitoKATP-associated PKCε. During ischemia, catabolism of mitochondrial phospholipids is accelerated, causing accumulation of plasmalogens and free fatty acids (FA) in the heart by the action of calcium independent phospholipases A2 (iPLA2). We first assessed the role of FAs and hydroxy FAs on mitoKATP opening and cardioprotection. Swelling assays of isolated rat heart mitochondria showed that naturally formed free FAs inhibit mitoKATP opening and that they are more potent inhibitors of the pharmacological open state of mitoKATP than the phosphorylation-dependent open state. That is, sustained mitoKATP opening induced by the phosphorylation-dependent feedback loop is more resistant to FA inhibition than direct mitoKATP opening by a potassium channel opener. Moreover, rat hearts perfused with micromolar concentrations of FA were resistant to cardioprotection by diazoxide or ischemic preconditioning. Racemic bromoenol lactone (BEL), a selective inhibitor of iPLA2, confers protection to otherwise untreated Langendorff perfused hearts by preventing ischemic FA release. To bring this story full circle, BEL blocks protection afforded by preconditioning and postconditioning by preventing the iPLA2-mediated release of FAOOH generated in the conditioned heart. HO• resulting from mitoKATP opening oxidizes polyunsaturated fatty acid components of the membrane phospholipids, resulting in a peroxidized side chain. FAOOH must be released in order to act on the mitochondrial PKCε, and this is achieved by the action of iPLA2. iPLA2 is essential for most modes of cardioprotection because it catalyzes the release of FAOOH. This fully supports the hypothesis that the second messenger of cardioprotective ROS-mediated signaling is hydroperoxy fatty acid (FAOOH), a downstream oxidation product of HO•.
797

Silent Information Regulator 2 Homolog 1 Counters Cerebral Hypoperfusion Injury by Deacetylating Endothelial Nitric Oxide Synthase / 哺乳類サーチュインSIRT1による内皮型一酸化窒素合成酵素の脱アセチル化により脳は低灌流傷害への抵抗性を獲得する

Hattori, Yorito 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18882号 / 医博第3993号 / 新制||医||1009(附属図書館) / 31833 / 京都大学大学院医学研究科医学専攻 / (主査)教授 宮本 享, 教授 小泉 昭夫, 教授 村井 俊哉 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
798

Impact of the cardiac arrest mode on cardiac death donor lungs / 心停止条件の違いによる心停止ドナー肺への影響

Yamada, Tetsu 23 July 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第19226号 / 医博第4025号 / 新制||医||1011(附属図書館) / 32225 / 京都大学大学院医学研究科医学専攻 / (主査)教授 福田 和彦, 教授 木村 剛, 教授 三嶋 理晃 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
799

β2-Adrenoreceptor Agonist Inhalation During Ex Vivo Lung Perfusion Attenuates Lung Injury / 体外肺潅流中のβ2受容体アゴニスト吸入は肺障害を緩和する

Kondo, Takeshi 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第19556号 / 医博第4063号 / 新制||医||1012(附属図書館) / 32592 / 京都大学大学院医学研究科医学専攻 / (主査)教授 小池 薫, 教授 福田 和彦, 教授 三嶋 理晃 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
800

Reconditioning Lungs Donated After Cardiac Death Using Short-Term Hypothermic Machine Perfusion / 短時間低温肺潅流保存による心停止ドナー肺の修復

Nakajima, Daisuke 25 July 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第19923号 / 医博第4143号 / 新制||医||1017(附属図書館) / 33009 / 京都大学大学院医学研究科医学専攻 / (主査)教授 木村 剛, 教授 福田 和彦, 教授 羽賀 博典 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM

Page generated in 0.0489 seconds