• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cellular and molecular effector mechanisms of islet allograft rejection /

Sleater, Michelle Leigh. January 2006 (has links)
Thesis (Ph.D. in Immunology) -- University of Colorado at Denver and Health Sciences Center, 2006. / Typescript. Includes bibliographical references (leaves 151-168). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
12

Indução da expressão da molécula indoleamina 2,3-dioxigenase (IDO) como terapia gênica em transplante experimental de ilhotas pancreáticas / Induction of the indoleamine 2,3-dioxygenase (IDO) molecule expression as gene therapy in experimental transplantation of pancreatic islets

Humberto Dellê 23 July 2007 (has links)
O transplante (Tx) de ilhotas pancreáticas (IP) é uma atraente alternativa para o tratamento do diabetes melito tipo 1. No entanto, para evitar a rejeição há necessidade de imunossupressão. Uma nova idéia de tolerância surge a partir do paradoxo imunológico, onde a mãe, imunologicamente competente, não rejeita o embrião durante a gravidez. Uma das hipóteses é que células da placenta expressam a molécula IDO, a qual protege o embrião do ataque imunológico materno. O objetivo do estudo foi analisar o efeito da indução da expressão da IDO em IP em transplante experimental de IP. Para tanto, as seguintes etapas de padronização foram necessárias. Etapa 1: Padronização da perfusão e digestão do tecido pancreático de rato e determinação do método para a purificação das IP, comparando-se diferentes gradientes de densidade: descontínuo de Ficoll, contínuo de Ficoll e contínuo de iodixanol. Foi demonstrado que o gradiente contínuo de iodixanol fornece maior pureza e maior número de IP íntegras e funcionais. Etapa 2: Padronização do Tx experimental de IP sob a cápsula renal para avaliação do número mínimo de IP transplantadas para reverter o diabetes induzido por estreptozotocina, definido como glicemia >300mg/Kg. Foram transplantadas entre 200 a 3.000 IP por experimento. A rejeição das IP foi analisada pela sobrevida das IP (permanência da glicemia <300mg/dL), tanto em Tx isogênico (Lewis-Lewis) como em alogênico (Sprague-Dawley-Lewis). Para reverter o diabetes foram necessárias no mínimo 2.500 IP. No transplante entre ratos isogênicos (n=6) não houve rejeição das IP. Já no transplante entre animais alogênicos (n=12), as IP apresentaram uma curta sobrevida pós-Tx (11±1 dias; p<0,01 vs. Tx isogênico). Dez dias pós-Tx, houve um grande infiltrado de macrófagos e linfócitos T no enxerto alogênico e uma diminuição significativa da expressão de insulina (p<0,001 vs. Tx isogênico). Etapa 3: Construção do vetor de expressão para IDO. A partir de RNA extraído de placenta de rata no 10º dia de gestação, foi amplificada a seqüência completa do cDNA para IDO, utilizando-se RT-PCR. Em seguida, o cDNA para IDO foi inserido em vetor de expressão (vetor-IDO). Etapa 4: Transfecção do vetor-IDO nas IP. O vetor-IDO foi introduzido nas IP através de lipofecção (Lipofectamina 2000), testando-se diferentes concentrações do vetor-IDO (0, 0,5, 1 e 10 ng/uL) e diferentes períodos de incubação (1h, 15h e 24h). A expressão de IDO nas IP foi confirmada por RT-PCR e imuno-histoquímica. A incubação com 10 ng/uL de vetor-IDO durante 24h foi eficaz para induzir a expressão de IDO nas IP, confirmada a nível de RNAm (RT-PCR) e de proteína (imuno-histoquímica). A eficiência da transfecção em nível funcional foi confirmada pela degradação de triptofano em cultura (dosagem de triptofano por HPLC). Etapa 5: Onze transplantes alogênicos (Sprague-Dawley-Lewis) com IP transfectadas com vetor-IDO foram realizados para analisar o efeito da IDO. Três animais foram sacrificados para análise de imuno-histoquímica e 8 animais foram acompanhados por 45 dias. A sobrevida das IP transfectadas com vetor-IDO foi significativamente maior comparada com a sobrevida de IP não-transfectadas (p<0,01). O estudo conclui que a expressão da IDO protege as IP aumentando a sobrevida das IP. / Transplantation (Tx) of pancreatic islets (PI) is an attractive alternative of treatment for type 1 diabetes mellitus. However, continuous immunossupression is necessary in order to avoid allograft rejection. A new idea of tolerance is based on the immunological paradox, during pregnancy, in that the mother, immunologically competent, does not reject the semi-allogeneic fetus. The hypothesis is that the placenta produces IDO molecules, which protect the embryos against the maternal immunologic attack. The aim of this study was to analyze the effect of the induction of the IDO expression into PI in an experimental model of PI transplantation. The following steps for standardization were necessary. Step 1: Besides the standardization of the rat pancreas perfusion and digestion, the best method for purification of the PI was determined, comparing several density gradients: Ficoll discontinuous, Ficoll continuous and iodixanol continuous. The iodixanol continuous gradient was able to provide high purity and a high number of intact and functional PI. Step 2: The transplantation of the PI between rats was established determining the minimal number of PI to reverse the diabetes (glycemia > 300mg/dL) induced by streptozotocin. In addition, the rejection was analyzed by PI survival (time with glycemia <300mg/dL) in syngeneic (Lewis-Lewis) and allogeneic (Sprague-Dawley-Lewis) transplantation. To reverse the diabetes at least 2,500 PI were necessary. Transplantation between syngenic rats (n=6) disclosed no rejection of the PI. In the allogeneic transplantation (n=12), the PI had a short survival (11±1 days). Ten days post-Tx, a higher number of macrophages and T lymphocytes were observed in the grafts, accompanied by very low insulin expression. Step 3: The expression vector for IDO was constructed from RNA extracted from rat placenta. RT-PCR was carried out to amplify the IDO cDNA, which was inserted into expression vector (IDO vector). Step 4: The IDO vector was introduced into PI through lipofection (Lipofectamine 2000) analyzing several concentrations of the IDO vector (0, 0.5, 1.0 and 10 ng/uL) and several periods of incubation (1h, 15h e 24h). The IDO expression in PI was confirmed by RT-PCR and immunohistochemistry. The incubation with 10 ng/uL of IDO vector during 24h was efficient to induce IDO expression in PI. The function of the IDO was confirmed by tryptofan degradation in culture (measurement of tryptofan by HPLC). Step 5: Eleven allogenic transplants (Sprague-Dawley to Lewis) of PI expressing IDO were performed to analyze the effect of the IDO in the rejection. Eight animals were accompanied for 45 days, whereas three were sacrificed after 10 days for immunohistochemistry analysis. Finally, the survival of the PI expressing IDO was significantly higher than nontransfected PI. The study concludes that the induction of the IDO into PI protects the PI increasing the PI survival.
13

Autoimmune Diabetes and Transplantation Tolerance Induced by Costimulation Blockade in NOD Mice: a Dissertation

Lambert, Julie 13 August 2007 (has links)
NOD mice model human type 1 diabetes and have been used to investigate tolerance induction protocols for islet transplantation in a setting of autoimmunity. Costimulation blockade-based tolerance protocols that induce prolonged skin and permanent islet allograft survival in non-autoimmune mice have failed in NOD mice. To investigate the underlying mechanisms, we generated NOD hematopoietic chimeras. We were able to show that dendritic cell maturation defects seen in NOD mice are partially corrected in mixed hematopoietic chimeras. Furthermore, skin allograft survival was dependent upon the phenotype of the bone marrow donor, demonstrating that in the NOD the resistance to tolerance induction resides in the hematopoietic compartment. In addition, we studied congenic NOD mice bearing insulin dependent diabetes (Idd) loci that reduce diabetes incidence. The incidence of diabetes is reduced in NOD.B6 Idd3 mice, and virtually absent in NOD.B6 Idd3Idd5 mice. Islet allograft survival in NOD.B6 Idd3 mice is prolonged as compared to NOD mice, and in NOD.B6 Idd3Idd5 mice islet allograft survival is similar to that achieved in C57BL/6 mice. Alloreactive CD8 T cell depletion in NOD mice treated with costimulation blockade is impaired, but is partially restored in NOD.B6 Idd3 mice, and completely restored in NOD.B6 Idd3Idd5 mice. Idd3 results from variations in Il2 gene transcription. We hypothesized insufficient levels of IL-2 in NOD mice contributes to impaired deletion of alloreactive CD8 T cells and shortened islet allograft survival. We observed using synchimeric mice that co-administration of exogenous IL-2 to NOD mice treated with costimulation blockade led to deletion of alloreactive CD8 T cells comparable to that in C57BL/6 mice and prolonged islet allograft survival. However, some Idd loci impaired the induction of transplantation tolerance. These data suggest that Idd loci can facilitate or impair induction of transplantation tolerance by costimulation blockade, and that Idd3 (IL-2) is critical component in this process.
14

The Genetic Basis of Resistance to Transplantation Tolerance Induced by Costimulation Blockade in NOD Mice: a Dissertation

Pearson, Todd 17 March 2003 (has links)
The NOD mouse is a widely studied model of type 1 diabetes. The loss of self-tolerance leading to autoimmune diabetes in NOD mice involves at least 27 genetic loci. Curing type I diabetes in mice and humans by islet transplantation requires overcoming both allorejection and recurrent autoimmunity. This has been achieved with systemic immunosuppression, but tolerance induction would be preferable. In addition to their genetic defects in self-tolerance, NOD mice resist peripheral transplantation tolerance induced by costimulation blockade using donor-specific transfusion and anti-CDl54 antibody. Failure has been attributed to the underlying autoimmunity, assuming that autoimmunity and resistance to transplantation tolerance have a common basis. Hypothesizing that these two abnormalities might be related, we investigated whether they had a common genetic basis. Diabetes-resistant NOD and C57BL/6 stocks congenic for various reciprocally introduced Idd loci were assessed for their ability to be tolerized. Surprisingly, in NOD congenic mice that are almost completely protected from diabetes, costimulation blockade failed to prolong skin allograft survival. In reciprocal C57BL/6 congenic mice with NOD-derived Idd loci, skin allograft survival was readily prolonged by costimulation blockade. Unexpectedly, we observed that (NOD x C57BL/6)F1 mice, which have no diabetes, nonetheless resist induction of tolerance to skin allografts. Further analyses revealed that the F1 mice shared the dendritic cell maturation defects and abnormal CD4+ T cell responses of the NOD but had lost its defects in macrophage maturation and NK cell activity. Finally, using a genome wide scan approach, we have identified four suggestive markers in the mouse genome that control the survival of skin allografts following DST and anti-CD154 mAb therapy. We suggest that mechanisms controlling autoimmunity and transplantation tolerance in NOD mice are not completely overlapping and are potentially distinct, or that the genetic threshold for normalizing the transplantation tolerance defect is higher than that for preventing autoimmune diabetes. We conclude that resistance to allograft tolerance induction in the NOD mouse is not a direct consequence of overt autoimmunity and that autoimmunity and resistance to costimulation blockade-induced transplantation tolerance phenotypes in NOD mice are not under identical genetic control.
15

Diagnostický příspěvek k hodnocení intervenčních modelů léčby diabetu mellitu 1. typu / Diagnostic contribution to the evaluation of intervention models in the treatment of type 1 diabetes

Zacharovová, Klára January 2012 (has links)
During treatment of diabetes mellitus by immunointervention or transplantation, it is necessary to monitor the markers of immune destruction or rejection of surviving insulin producing cells. An aim of this thesis is to improve the possibilities of following autoimmunity and to detect the survival of transplanted pancreatic islet in vivo. Partial aims included vitality testing of isolated islets for transplantation by measurement of respiration activity, observing the process of in vitro labeling of isolated islets with superparamagnetic iron oxide (SPIO) contrast agent for subsequent magnetic resonance imaging (MRI) of islets and observing SPIO particles transport after transplantation. We also studied a new dual paramagnetic contrast agent combined with fluorescein intended for identification of the MRI contrast agent in samples for histology. Further, we assessed autoimmune reaction by evaluation of cytokine response to specific stimulation with auto-antigens. We tried to affect beta-cells destruction by polyclonal anti- thymocyte antibodies in a mouse experimental model. A new method of the islet respiration measurement correlated with other methods of islet quality testing and it was suggested as a diagnostic test before clinical transplantation. Results obtained studying the intercellular...
16

Diagnostický příspěvek k hodnocení intervenčních modelů léčby diabetu mellitu 1. typu / Diagnostic contribution to the evaluation of intervention models in the treatment of type 1 diabetes

Zacharovová, Klára January 2012 (has links)
During treatment of diabetes mellitus by immunointervention or transplantation, it is necessary to monitor the markers of immune destruction or rejection of surviving insulin producing cells. An aim of this thesis is to improve the possibilities of following autoimmunity and to detect the survival of transplanted pancreatic islet in vivo. Partial aims included vitality testing of isolated islets for transplantation by measurement of respiration activity, observing the process of in vitro labeling of isolated islets with superparamagnetic iron oxide (SPIO) contrast agent for subsequent magnetic resonance imaging (MRI) of islets and observing SPIO particles transport after transplantation. We also studied a new dual paramagnetic contrast agent combined with fluorescein intended for identification of the MRI contrast agent in samples for histology. Further, we assessed autoimmune reaction by evaluation of cytokine response to specific stimulation with auto-antigens. We tried to affect beta-cells destruction by polyclonal anti- thymocyte antibodies in a mouse experimental model. A new method of the islet respiration measurement correlated with other methods of islet quality testing and it was suggested as a diagnostic test before clinical transplantation. Results obtained studying the intercellular...
17

Egr-2 and PD-1 Are Required for Induction and Maintenance of T Cell Anergy: A Dissertation

Bishop, Kenneth D. 13 July 2005 (has links)
The prevalence of diabetes is approaching epidemic proportions worldwide. There is currently no cure for type 1 diabetes, and successful treatment requires constant monitoring of blood sugars and use of exogenous insulin to prevent hyperglycemia. Diabetes will be curable when pancreatic β-islet cells can be transplanted into diabetes patients without requiring long-term immunosuppression. This will require learning more about the induction of functional tolerance, a state that maintains the competence of the immune system to most antigens but protects graft-specific antigens from immune rejection, permitting transplantation. One known mechanism of peripheral tolerance is T cell anergy, a phenotype of hypo-reponsiveness in CD4+ T cells. The focus of this thesis is a description of factors shown to be specific to the induction and maintenance of T cell anergy, whose loss reverses the anergic phenotype, restoring the ability of the cells to proliferate in response to antigen. The first of these is Egr-2, a zinc-finger transcription factor, whose presence is required for the induction of anergy induced in T cell clones by TCR stimulation in the absence of costimulation. Egr-2 is shown to be important to anergy induction but not anergy maintenance. In contrast, a negative costimulation receptor, PD-1, is shown to be necessary for the maintenance of anergy. It is possible that learning more about the genetic factors that orchestrate T cell anergy will prove useful in the development of tolerance-based protocols for organ and tissue transplantation without the use of long-term immunosuppression.

Page generated in 0.2604 seconds