• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

VARIANCE OF THE AMYLOID BETA PEPTIDE AS A METRIC FOR THE DIAGNOSIS OF ALZHEIMER'S DISEASE

Beckett, Christina 01 January 2016 (has links)
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder associated with aging. AD is by far the best understood and most studied neurodegenerative disease. Substantial advances have been made over the last decade, however it is debatable how much closer we are to a clinically useful therapy. A long standing goal in the AD field has been to improve the accuracy of early detection, with the assumption that the ability to intervene earlier in the disease process will lead to a better clinical outcome. Major facets of this effort have been the continued development and improvement of AD biomarkers, with a strong focus on developing imaging modalities. AD is accompanied by two pathological hallmarks in the brain: extracellular neuritic plaques composed of the beta-amyloid peptide (Aβ) and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein. Evidence of Aβ as the driving force behind the progression of AD (the amyloid cascade hypothesis) was first published by Hardy & Higgins in 1992, and this peptide has been the focus of therapeutic and diagnostic testing for decades. Significant technological advances in recent years now allow imaging of amyloid pathology in vivo. These methods evaluate Aβ burden in a living person, and could potentially serve as both a biomarker, and as a diagnostic tool to detect disease. Pittsburgh Compound B (PiB) is currently the best studied of these imaging agents, however, our current knowledge of the quantitative relationship between PiB binding and amyloid pathology in the brain is limited. A better understanding of how these variables relate to one another is essential for the continued development of reliable diagnostic biomarkers for AD. We analyzed increasingly insoluble pools of Aβ to quantify their relative contributions to the overall Aβ burden, and to determine if any of these measures could be used to predict disease status. We found that the amount of PiB binding in a cortical region of the brain could distinguish cases of mild cognitive impairment (MCI) when corrected to the amount of PiB binding in the cerebellum. As the Aβ peptide ages, the amino acid aspartate may spontaneously convert to an isoaspartate residue through a succinimide intermediary. The presence of iso-Asp Aβ has been used to indicate the presence of aged plaques in AD and Down syndrome cases. We sought to investigate the potential relationship between levels of ‘aged’ Aβ in the plasma as indicated by iso-Asp Aβ and disease state, as a potential biomarker for the presence of AD pathology. We found that AD cases had lower levels of all forms of Aβ in plasma when standardized to the group average, and that plasma levels of Aβ and iso-Asp Aβ were reversed between disease groups. A follow up study is required, however, these initial data are a promising step towards utilizing aged iso-Asp Aβ plasma levels as a potential biomarker to indicate disease state.
2

Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer’s disease-like pathology

Gnoth, Kathrin, Piechotta, Anke, Kleinschmidt, Martin, Konrath, Sandra, Schenk, Mathias, Taudte, Nadine, Ramsbeck, Daniel, Rieckmann, Vera, Geissler, Stefanie, Eichentopf, Rico, Barendrecht, Susan, Hartlage-Rübsamen, Maike, Demuth, Hans-Ulrich, Roßner, Steffen, Cynis, Holger, Rahfeld, Jens-Ulrich, Schilling, Stephan 26 September 2024 (has links)
Background: Amyloid β (Aβ)-directed immunotherapy has shown promising results in preclinical and early clinical Alzheimer’s disease (AD) trials, but successful translation to late clinics has failed so far. Compelling evidence suggests that post-translationally modified Aβ peptides might play a decisive role in onset and progression of AD and first clinical trials targeting such Aβ variants have been initiated. Modified Aβ represents a small fraction of deposited material in plaques compared to pan-Aβ epitopes, opening up pathways for tailored approaches of immunotherapy. Here, we generated the first monoclonal antibodies that recognize L-isoaspartate-modified Aβ (isoD7-Aβ) and tested a lead antibody molecule in 5xFAD mice. Methods: This work comprises a combination of chemical and biochemical techniques as well as behavioral analyses. Aβ peptides, containing L-isoaspartate at position 7, were chemically synthesized and used for immunization of mice and antibody screening methods. Biochemical methods included anti-isoD7-Aβ monoclonal antibody characterization by surface plasmon resonance, immunohistochemical staining of human and transgenic mouse brain, and the development and application of isoD7-Aβ ELISA as well as different non-modified Aβ ELISA. For antibody treatment studies, 12 mg/kg anti-isoD7-Aβ antibody K11_IgG2a was applied intraperitoneally to 5xFAD mice for 38 weeks. Treatment controls implemented were IgG2a isotype as negative and 3D6_IgG2a, the parent molecule of bapineuzumab, as positive control antibodies. Behavioral studies included elevated plus maze, pole test, and Morris water maze. Results: Our advanced antibody K11 showed a KD in the low nM range and > 400fold selectivity for isoD7-Aβ compared to other Aβ variants. By using this antibody, we demonstrated that formation of isoD7-Aβ may occur after formation of aggregates; hence, the presence of the isoD7-modification differentiates aged Aβ from newly formed peptides. Importantly, we also show that the Tottori mutation responsible for early-onset AD in a Japanese pedigree is characterized by massively accelerated formation of isoD7-Aβ in cell culture. The presence of isoD7-Aβ was verified by K11 in post mortem human cortex and 5xFAD mouse brain tissue. Passive immunization of 5xFAD mice resulted in a significant reduction of isoD7-Aβ and total Aβ in brain. Amelioration of cognitive impairment was demonstrated by Morris water maze, elevated plus maze, pole, and contextual fear conditioning tests. Interestingly, despite the lower abundance of the isoD7-Aβ epitope, the application of anti-isoD7-Aβ antibodies showed comparable treatment efficacy in terms of reduction of brain amyloid and spatial learning but did not result in an increase of plasma Aβ concentration as observed with 3D6 treatment. Conclusions: The present study demonstrates, for the first time, that the antibody-mediated targeting of isoD7- modified Aβ peptides leads to attenuation of AD-like amyloid pathology. In conjunction with previously published data on antibodies directed against pGlu-modified Aβ, the results highlight the crucial role of modified Aβ peptides in AD pathophysiology. Hence, the results also underscore the therapeutic potential of targeting modified amyloid species for defining tailored approaches in AD therapy.

Page generated in 0.0512 seconds