Spelling suggestions: "subject:"isogeometrische 3analyse"" "subject:"isogeometrische analanalyse""
1 |
Advanced Numerical Modelling of Discontinuities in Coupled Boundary Value Problems / Numerische Modellierung von Diskontinuitäten in Gekoppelten RandwertproblemenKästner, Markus 18 August 2016 (has links) (PDF)
Industrial development processes as well as research in physics, materials and engineering science rely on computer modelling and simulation techniques today. With increasing computer power, computations are carried out on multiple scales and involve the analysis of coupled problems. In this work, continuum modelling is therefore applied at different scales in order to facilitate a prediction of the effective material or structural behaviour based on the local morphology and the properties of the individual constituents. This provides valueable insight into the structure-property relations which are of interest for any design process.
In order to obtain reasonable predictions for the effective behaviour, numerical models which capture the essential fine scale features are required. In this context, the efficient representation of discontinuities as they arise at, e.g. material interfaces or cracks, becomes more important than in purely phenomenological macroscopic approaches. In this work, two different approaches to the modelling of discontinuities are discussed: (i) a sharp interface representation which requires the localisation of interfaces by the mesh topology. Since many interesting macroscopic phenomena are related to the temporal evolution of certain microscopic features, (ii) diffuse interface models which regularise the interface in terms of an additional field variable and therefore avoid topological mesh updates are considered as an alternative.
With the two combinations (i) Extended Finite Elemente Method (XFEM) + sharp interface model, and (ii) Isogeometric Analysis (IGA) + diffuse interface model, two fundamentally different approaches to the modelling of discontinuities are investigated in this work. XFEM reduces the continuity of the approximation by introducing suitable enrichment functions according to the discontinuity to be modelled. Instead, diffuse models regularise the interface which in many cases requires even an increased continuity that is provided by the spline-based approximation. To further increase the efficiency of isogeometric discretisations of diffuse interfaces, adaptive mesh refinement and coarsening techniques based on hierarchical splines are presented. The adaptive meshes are found to reduce the number of degrees of freedom required for a certain accuracy of the approximation significantly.
Selected discretisation techniques are applied to solve a coupled magneto-mechanical problem for particulate microstructures of Magnetorheological Elastomers (MRE). In combination with a computational homogenisation approach, these microscopic models allow for the prediction of the effective coupled magneto-mechanical response of MRE. Moreover, finite element models of generic MRE microstructures are coupled with a BEM domain that represents the surrounding free space in order to take into account finite sample geometries. The macroscopic behaviour is analysed in terms of actuation stresses, magnetostrictive deformations, and magnetorheological effects. The results obtained for different microstructures and various loadings have been found to be in qualitative agreement with experiments on MRE as well as analytical results. / Industrielle Entwicklungsprozesse und die Forschung in Physik, Material- und Ingenieurwissenschaft greifen in einem immer stärkeren Umfang auf rechnergestützte Modellierungs- und Simulationsverfahren zurück. Die ständig steigende Rechenleistung ermöglicht dabei auch die Analyse mehrskaliger und gekoppelter Probleme. In dieser Arbeit kommt daher ein kontinuumsmechanischer Modellierungsansatz auf verschiedenen Skalen zum Einsatz. Das Ziel der Berechnungen ist dabei die Vorhersage des effektiven Material- bzw. Strukturverhaltens auf der Grundlage der lokalen Werkstoffstruktur und der Eigenschafen der konstitutiven Bestandteile. Derartige Simulationen liefern interessante Aussagen zu den Struktur-Eigenschaftsbeziehungen, deren Verständnis entscheidend für das Material- und Strukturdesign ist.
Um aussagekräftige Vorhersagen des effektiven Verhaltens zu erhalten, sind numerische Modelle erforderlich, die wesentliche Eigenschaften der lokalen Materialstruktur abbilden. Dabei kommt der effizienten Modellierung von Diskontinuitäten, beispielsweise Materialgrenzen oder Rissen, eine deutlich größere Bedeutung zu als bei einer makroskopischen Betrachtung. In der vorliegenden Arbeit werden zwei unterschiedliche Modellierungsansätze für Unstetigkeiten diskutiert: (i) eine scharfe Abbildung, die üblicherweise konforme Berechnungsnetze erfordert. Da eine Evolution der Mikrostruktur bei einer derartigen Modellierung eine Topologieänderung bzw. eine aufwendige Neuvernetzung nach sich zieht, werden alternativ (ii) diffuse Modelle, die eine zusätzliche Feldvariable zur Regularisierung der Grenzfläche verwenden, betrachtet.
Mit der Kombination von (i) Erweiterter Finite-Elemente-Methode (XFEM) + scharfem Grenzflächenmodell sowie (ii) Isogeometrischer Analyse (IGA) + diffuser Grenzflächenmodellierung werden in der vorliegenden Arbeit zwei fundamental verschiedene Zugänge zur Modellierung von Unstetigkeiten betrachtet. Bei der Diskretisierung mit XFEM wird die Kontinuität der Approximation durch eine Anreicherung der Ansatzfunktionen gemäß der abzubildenden Unstetigkeit reduziert. Demgegenüber erfolgt bei einer diffusen Grenzflächenmodellierung eine Regularisierung. Die dazu erforderliche zusätzliche Feldvariable führt oft zu Feldgleichungen mit partiellen Ableitungen höherer Ordnung und weist in ihrem Verlauf starke Gradienten auf. Die daraus resultierenden Anforderungen an den Ansatz werden durch eine Spline-basierte Approximation erfüllt. Um die Effizienz dieser isogeometrischen Diskretisierung weiter zu erhöhen, werden auf der Grundlage hierarchischer Splines adaptive Verfeinerungs- und Vergröberungstechniken entwickelt.
Ausgewählte Diskretisierungsverfahren werden zur mehrskaligen Modellierung des gekoppelten magnetomechanischen Verhaltens von Magnetorheologischen Elastomeren (MRE) angewendet. In Kombination mit numerischen Homogenisierungsverfahren, ermöglichen die Mikrostrukturmodelle eine Vorhersage des effektiven magnetomechanischen Verhaltens von MRE. Außerderm wurden Verfahren zur Kopplung von FE-Modellen der MRE-Mikrostruktur mit einem Randelement-Modell der Umgebung vorgestellt. Mit Hilfe der entwickelten Verfahren kann das Verhalten von MRE in Form von Aktuatorspannungen, magnetostriktiven Deformationen und magnetischen Steifigkeitsänderungen vorhergesagt werden. Im Gegensatz zu zahlreichen anderen Modellierungsansätzen, stimmen die mit den hier vorgestellten Methoden für unterschiedliche Mikrostrukturen erzielten Vorhersagen sowohl mit analytischen als auch experimentellen Ergebnissen überein.
|
2 |
Advanced Numerical Modelling of Discontinuities in Coupled Boundary ValueProblemsKästner, Markus 18 August 2016 (has links)
Industrial development processes as well as research in physics, materials and engineering science rely on computer modelling and simulation techniques today. With increasing computer power, computations are carried out on multiple scales and involve the analysis of coupled problems. In this work, continuum modelling is therefore applied at different scales in order to facilitate a prediction of the effective material or structural behaviour based on the local morphology and the properties of the individual constituents. This provides valueable insight into the structure-property relations which are of interest for any design process.
In order to obtain reasonable predictions for the effective behaviour, numerical models which capture the essential fine scale features are required. In this context, the efficient representation of discontinuities as they arise at, e.g. material interfaces or cracks, becomes more important than in purely phenomenological macroscopic approaches. In this work, two different approaches to the modelling of discontinuities are discussed: (i) a sharp interface representation which requires the localisation of interfaces by the mesh topology. Since many interesting macroscopic phenomena are related to the temporal evolution of certain microscopic features, (ii) diffuse interface models which regularise the interface in terms of an additional field variable and therefore avoid topological mesh updates are considered as an alternative.
With the two combinations (i) Extended Finite Elemente Method (XFEM) + sharp interface model, and (ii) Isogeometric Analysis (IGA) + diffuse interface model, two fundamentally different approaches to the modelling of discontinuities are investigated in this work. XFEM reduces the continuity of the approximation by introducing suitable enrichment functions according to the discontinuity to be modelled. Instead, diffuse models regularise the interface which in many cases requires even an increased continuity that is provided by the spline-based approximation. To further increase the efficiency of isogeometric discretisations of diffuse interfaces, adaptive mesh refinement and coarsening techniques based on hierarchical splines are presented. The adaptive meshes are found to reduce the number of degrees of freedom required for a certain accuracy of the approximation significantly.
Selected discretisation techniques are applied to solve a coupled magneto-mechanical problem for particulate microstructures of Magnetorheological Elastomers (MRE). In combination with a computational homogenisation approach, these microscopic models allow for the prediction of the effective coupled magneto-mechanical response of MRE. Moreover, finite element models of generic MRE microstructures are coupled with a BEM domain that represents the surrounding free space in order to take into account finite sample geometries. The macroscopic behaviour is analysed in terms of actuation stresses, magnetostrictive deformations, and magnetorheological effects. The results obtained for different microstructures and various loadings have been found to be in qualitative agreement with experiments on MRE as well as analytical results. / Industrielle Entwicklungsprozesse und die Forschung in Physik, Material- und Ingenieurwissenschaft greifen in einem immer stärkeren Umfang auf rechnergestützte Modellierungs- und Simulationsverfahren zurück. Die ständig steigende Rechenleistung ermöglicht dabei auch die Analyse mehrskaliger und gekoppelter Probleme. In dieser Arbeit kommt daher ein kontinuumsmechanischer Modellierungsansatz auf verschiedenen Skalen zum Einsatz. Das Ziel der Berechnungen ist dabei die Vorhersage des effektiven Material- bzw. Strukturverhaltens auf der Grundlage der lokalen Werkstoffstruktur und der Eigenschafen der konstitutiven Bestandteile. Derartige Simulationen liefern interessante Aussagen zu den Struktur-Eigenschaftsbeziehungen, deren Verständnis entscheidend für das Material- und Strukturdesign ist.
Um aussagekräftige Vorhersagen des effektiven Verhaltens zu erhalten, sind numerische Modelle erforderlich, die wesentliche Eigenschaften der lokalen Materialstruktur abbilden. Dabei kommt der effizienten Modellierung von Diskontinuitäten, beispielsweise Materialgrenzen oder Rissen, eine deutlich größere Bedeutung zu als bei einer makroskopischen Betrachtung. In der vorliegenden Arbeit werden zwei unterschiedliche Modellierungsansätze für Unstetigkeiten diskutiert: (i) eine scharfe Abbildung, die üblicherweise konforme Berechnungsnetze erfordert. Da eine Evolution der Mikrostruktur bei einer derartigen Modellierung eine Topologieänderung bzw. eine aufwendige Neuvernetzung nach sich zieht, werden alternativ (ii) diffuse Modelle, die eine zusätzliche Feldvariable zur Regularisierung der Grenzfläche verwenden, betrachtet.
Mit der Kombination von (i) Erweiterter Finite-Elemente-Methode (XFEM) + scharfem Grenzflächenmodell sowie (ii) Isogeometrischer Analyse (IGA) + diffuser Grenzflächenmodellierung werden in der vorliegenden Arbeit zwei fundamental verschiedene Zugänge zur Modellierung von Unstetigkeiten betrachtet. Bei der Diskretisierung mit XFEM wird die Kontinuität der Approximation durch eine Anreicherung der Ansatzfunktionen gemäß der abzubildenden Unstetigkeit reduziert. Demgegenüber erfolgt bei einer diffusen Grenzflächenmodellierung eine Regularisierung. Die dazu erforderliche zusätzliche Feldvariable führt oft zu Feldgleichungen mit partiellen Ableitungen höherer Ordnung und weist in ihrem Verlauf starke Gradienten auf. Die daraus resultierenden Anforderungen an den Ansatz werden durch eine Spline-basierte Approximation erfüllt. Um die Effizienz dieser isogeometrischen Diskretisierung weiter zu erhöhen, werden auf der Grundlage hierarchischer Splines adaptive Verfeinerungs- und Vergröberungstechniken entwickelt.
Ausgewählte Diskretisierungsverfahren werden zur mehrskaligen Modellierung des gekoppelten magnetomechanischen Verhaltens von Magnetorheologischen Elastomeren (MRE) angewendet. In Kombination mit numerischen Homogenisierungsverfahren, ermöglichen die Mikrostrukturmodelle eine Vorhersage des effektiven magnetomechanischen Verhaltens von MRE. Außerderm wurden Verfahren zur Kopplung von FE-Modellen der MRE-Mikrostruktur mit einem Randelement-Modell der Umgebung vorgestellt. Mit Hilfe der entwickelten Verfahren kann das Verhalten von MRE in Form von Aktuatorspannungen, magnetostriktiven Deformationen und magnetischen Steifigkeitsänderungen vorhergesagt werden. Im Gegensatz zu zahlreichen anderen Modellierungsansätzen, stimmen die mit den hier vorgestellten Methoden für unterschiedliche Mikrostrukturen erzielten Vorhersagen sowohl mit analytischen als auch experimentellen Ergebnissen überein.
|
Page generated in 0.0803 seconds