• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 12
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 149
  • 149
  • 107
  • 29
  • 22
  • 21
  • 18
  • 15
  • 15
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The Observed Stable Carbon Isotope Fractionation Effects of a Chloroform and 1,1,1-Trichloroethane Dechlorinating Culture

Chan, Calvin 21 November 2012 (has links)
Little is known about the enzyme-substrate interactions occurring during the dechlorination of chloroform (CF) and 1,1,1-trichloroethane (1,1,1-TCA) by the enrichment culture containing Dehalobacters, hereafter called DHB-CF/MEL. Compound specific isotope analysis (CSIA) is used to investigate the factors which may affect the isotope fractionation observed for CF and 1,1,1-TCA dechlorination. This thesis reports the first isotope enrichment factors observed for CF biodegradation at -27.5‰ ± 0.9‰, thus providing fundamental information for comparing isotope enrichment factors observed during trichlorinated alkane degradation by DHB-CF/MEL. The thesis also reports how the presence of CF and 1,1,1-TCA influences isotope fractionation and explores the possible influence of substrate inhibition on isotope fractionation during 1,1,1-TCA dechlorination. The data suggests that substrate inhibition during 1,1,1-TCA dechlorination by DHB-CF/MEL may not affect carbon isotope fractionation. The results suggest that CSIA is a promising monitoring tool even for the simultaneous biodegradation of CF and 1,1,1-TCA at different 1,1,1-TCA starting concentration.
62

Fish communities near municipal wastewater discharges in the Grand River watershed

Brown, Carolyn J M January 2010 (has links)
Municipal wastewater effluent (MWWE) has the potential for aquatic degradation, as it is the largest, per volume, anthropogenic discharge in Canada and other areas in the world. With an increasing population in many areas, such as Southern Ontario, there is concern that infrastructure of wastewater treatment facilities will not be able to maintain adequate treatment and prevent further degradation of the environment. The Grand River watershed, in Southern Ontario, is predicted to have its population increase to 1.2 million people by 2031 (from 780,000 people in 2001). Although wastewater treatment has improved, concern remains for receiving environments due to inadequate treatment (i.e. Kitchener) and minimal dilution (i.e. Guelph). This research was conducted to understand current impacts of MWWE in the Grand River watershed on fish communities to support future management and protection. Study sites upstream and downstream were chosen for their proximity to the Guelph, Kitchener, and Waterloo MWWE outfalls, similarity in habitat, and wadeability. Habitat analysis indicated that there were no large physical differences among sites. Fish communities were collected in a standardized method with a backpack electroshocker at each site (six randomly selected 10 m by 10 m sub-sites for 5 min). Greenside Darter (Etheostoma blennioides) and Rainbow Darter (E. caeruleum), the most abundant species, were also analyzed for stable isotope signatures (δ13C and δ15N) at each site. Downstream of the Guelph outfall there were no changes in mean total catch per unit effort (CPUE) or mean total mass. Changes to diversity, resilience, and tolerance in the fish community were attributed to a decreased abundance of Greenside Darter and increased abundance of Rainbow Darter. Downstream of the Kitchener discharge, there was a trend towards decreasing mean total CPUE, especially for darter species, and an increase in mean total mass due to a community shift to larger species including Catostomids and Centrarchids. The changes in abundance of Rainbow Darter, Catostomids, and Centrarchids among reference and Kitchener MWWE exposed sites explained the pattern in resilience, tolerance, and diet classifications. Lower diversity downstream of all three MWWE outfalls can be attributed to the increase in Rainbow Darter abundance. Stable isotope signatures (δ13C and δ15N) of Greenside Darter did not change downstream of the Guelph and Waterloo discharges, but signatures of Rainbow Darter increased immediately below the two outfalls. This shift may be due to the Rainbow Darter being able to take advantage of a change in the environment (i.e. food availability), resulting in its increased abundance and changes in isotopic signature. Directly downstream of the Kitchener outfall both darter species had an increase in δ13C and a large decrease in δ15N, likely due to high nutrient inputs from the outfall. The Kitchener wastewater discharge is also associated with a decrease in abundance of fish and a shift in community structure. MWWEs are currently affecting the aquatic environment, including fish communities in the Grand River watershed. Future investments in infrastructure and watershed management should be made to mitigate degradation of water quality in this watershed.
63

Role of landscape composition and geographical location on breeding philopatry in grassland passerines : a stable isotope approach

Brewster, Katherine Rose 01 April 2009 (has links)
Grassland bird populations in North America are in steady decline. Despite declining faster and more consistently than any other group of birds, grassland songbird populations are relatively understudied and little is known about factors driving breeding-site philopatry and dispersal. Landscape and habitat composition may influence fidelity of grassland songbirds to a breeding area. As predicted by the theory of the <i>Ideal Free Distribution</i>, high-quality sites are likely to have a higher percentage of return breeders than low-quality sites because higher quality sites should have more or better-quality resources birds need for improved fitness. Using stable hydrogen isotope (äD) analysis, I approximated minimum fidelity rates of two grassland songbirds to two landscape (grass- vs crop-dominated landscapes) and two habitat (native grass vs planted grass) types. I hypothesized that grassland songbirds would return more readily to higher quality sites. For Spragues Pipit (<i>Anthus spragueii</i>), a habitat specialist, this would mean returning more readily to native grass habitat in grass dominated landscapes. I expected no difference in return rate of Savannah Sparrow (<i>Passerculus sandwichensis</i>), a habitat generalist, to either habitat or landscape. However, I found that the proportion of non-returning breeders was not influenced by landscape or habitat for either species. Furthermore, I examined attributes (distance from capture point to nearest crop and to the nearest road, as well as the percentage of native grass, planted grass, water and woody vegetation within landscape and territory buffers around the capture point) of the landscape and territory of each individual to determine if specific landscape or territory characteristics influenced their return rate to a breeding area. Neither species showed an affinity or aversion to any of the landscape or territory characteristics considered.<p> At a larger scale, geographical position within the breeding range may influence dispersal rates of migratory songbirds. Given that environmental factors often change in a clinal manner, central populations presumably experience the most favorable environmental conditions and peripheral populations the least favorable. Therefore, geographically peripheral locations likely occur in ecologically marginal or stressful conditions, resulting in higher dispersal rates of migratory birds. I examined the differences in dispersal rates of two grassland songbirds at two geographically distinct locations; one centrally located in the Spragues Pipit breeding range (Last Mountain Lake area, SK, Canada) and one at the periphery (Bowdoin National Wildlife Refuge, MT, USA). As expected, Spragues Pipits at the Bowdoin National Wildlife Refuge had a significantly larger dispersal rate than at the Last Mountain Lake area. Savannah Sparrow dispersal rates did not differ between locations at the more conservative outlier classification. These results provide some limited evidence that geographical position within the breeding range can influence dispersal rates.<p> Using äD analysis, I found that local amount-weighted growing-season deuterium in precipitation (äDp) at locations within grassland ecosystems differed from those long-term (45+ year) models described by stable hydrogen isotope ratio basemaps, illustrated in Hobson and Wassenaar (1997), Meehan et al. (2004) and Bowen et al. (2005). Therefore, I describe how äDp values were corrected from the long-term isoscape value predicted by Bowen et al. (2005). This method of determining year-specific local weighted growing-season äDp is an improvement upon the currently used Bowen et al. (2005) isoscape that is based on long-term precipitation patterns. To improve assignment of individuals to origins based on their äDf values, future research should incorporate year-to-year variation by applying year-specific corrections to the Bowen et al. (2005) isoscape.<p> More research is needed to determine the factors affecting the philopatry and dispersal of grassland songbirds in order to conserve them.
64

Stable carbon isotope ratio of polycyclic aromatic hydrocarbons (PAHs) in the environment: validation of isolation and stable carbon isotope analysis methods

Kim, Moon Koo 15 November 2004 (has links)
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, toxic contaminants that are released to the environment from various petrogenic and pyrogenic sources. In an effort to more clearly identify and trace sources of PAHs in the environment, purification and compound specific isotope analysis methods were developed to accurately measure the stable carbon isotope ratio of individual PAHs. Development of the method included improving accuracy and precision of the isotopic measurement by producing highly pure extracts using various chromatographic techniques. The method was refined by improving compound separations using purification techniques and high resolution chromatographic columns. The purification method consists of alumina/silica gel column chromatography, gel permeation chromatography and thin layer chromatography. The mean recovery of PAHs after the purification procedure was approximately 80 %. Sample purities after purification were verified by GC/FID and full scan mass spectrometry. To better resolve peaks and provide more accurate stable carbon isotope measurements, various gas chromatographic conditions were evaluated. The precision of the method ranged between 0.08 and 0.43 . The analytical protocols were evaluated to confirm compositional and stable isotopic integrity during purification and stable isotopic analysis. To confirm the utility of the purification and isotope analysis methods, various environmental samples from marine, land and lacustrine environments were analyzed. The isolates were analyzed for the composition and the stable carbon isotope ratios of PAHs. The stable carbon isotope ratio was measured by GC/IRMS and the results, along with quantitative compound compositions, were used to characterize and identify the contaminant sources. The sources of the PAHs in the study areas were differentiated by PAH molecular ratios and confirmed by stable carbon isotope ratios. This study confirms that compound specific isotope analysis of pollutants by GC/IRMS can be used to identify PAH sources in environmental samples. The study also confirms that the purification and stable carbon isotope analysis methods that were developed can be used to accurately measure the stable carbon isotope ratios of PAHs in environmental samples for the purpose of source identification. GC/IRMS measurement of stable isotopic compositions can be an effective fingerprinting method when used in conjunction with traditional molecular composition methods.
65

Fish communities near municipal wastewater discharges in the Grand River watershed

Brown, Carolyn J M January 2010 (has links)
Municipal wastewater effluent (MWWE) has the potential for aquatic degradation, as it is the largest, per volume, anthropogenic discharge in Canada and other areas in the world. With an increasing population in many areas, such as Southern Ontario, there is concern that infrastructure of wastewater treatment facilities will not be able to maintain adequate treatment and prevent further degradation of the environment. The Grand River watershed, in Southern Ontario, is predicted to have its population increase to 1.2 million people by 2031 (from 780,000 people in 2001). Although wastewater treatment has improved, concern remains for receiving environments due to inadequate treatment (i.e. Kitchener) and minimal dilution (i.e. Guelph). This research was conducted to understand current impacts of MWWE in the Grand River watershed on fish communities to support future management and protection. Study sites upstream and downstream were chosen for their proximity to the Guelph, Kitchener, and Waterloo MWWE outfalls, similarity in habitat, and wadeability. Habitat analysis indicated that there were no large physical differences among sites. Fish communities were collected in a standardized method with a backpack electroshocker at each site (six randomly selected 10 m by 10 m sub-sites for 5 min). Greenside Darter (Etheostoma blennioides) and Rainbow Darter (E. caeruleum), the most abundant species, were also analyzed for stable isotope signatures (δ13C and δ15N) at each site. Downstream of the Guelph outfall there were no changes in mean total catch per unit effort (CPUE) or mean total mass. Changes to diversity, resilience, and tolerance in the fish community were attributed to a decreased abundance of Greenside Darter and increased abundance of Rainbow Darter. Downstream of the Kitchener discharge, there was a trend towards decreasing mean total CPUE, especially for darter species, and an increase in mean total mass due to a community shift to larger species including Catostomids and Centrarchids. The changes in abundance of Rainbow Darter, Catostomids, and Centrarchids among reference and Kitchener MWWE exposed sites explained the pattern in resilience, tolerance, and diet classifications. Lower diversity downstream of all three MWWE outfalls can be attributed to the increase in Rainbow Darter abundance. Stable isotope signatures (δ13C and δ15N) of Greenside Darter did not change downstream of the Guelph and Waterloo discharges, but signatures of Rainbow Darter increased immediately below the two outfalls. This shift may be due to the Rainbow Darter being able to take advantage of a change in the environment (i.e. food availability), resulting in its increased abundance and changes in isotopic signature. Directly downstream of the Kitchener outfall both darter species had an increase in δ13C and a large decrease in δ15N, likely due to high nutrient inputs from the outfall. The Kitchener wastewater discharge is also associated with a decrease in abundance of fish and a shift in community structure. MWWEs are currently affecting the aquatic environment, including fish communities in the Grand River watershed. Future investments in infrastructure and watershed management should be made to mitigate degradation of water quality in this watershed.
66

Assessment of the Physical and Biological Effects of Mine Related Total Suspended Solids in Arctic Lakes

VanEngen, Ryan 09 May 2012 (has links)
The objective of this thesis was to assess the physical (concentrations, durations, and sedimentation) and biological effects of total suspended solids (TSS) in Arctic lakes following in-lake construction of dikes. TSS concentration and duration estimates were applied in a Severity of Ill Effects model which predicted possible habitat degradation and a reduction of feeding of salmonids with no significant difference between stations (ANOVA, p=0.153). Benthic invertebrates collected inside suspended sediment containment curtains showed a decrease in richness and abundance (Tukey’s, p<0.05), with no effects elsewhere. Stable isotope analysis from lake trout and arctic char muscle tissue suggested no differences in isotopic signatures following TSS exposure, but stable isotope analysis of stomach contents in lake trout had a significant increase in δ15N compared to the reference basin (Tukey’s, p<0.05). These findings suggested that lake trout adapted their food sources under moderate TSS exposure and benthic invertebrates rapidly recovered to pre-disturbance values. / Agnico-Eagle Mines Limited: Meadowbank Division and the University of Guelph; Research approved by Department of Fisheries and Oceans & Nunavut Impact Review Board
67

Influence of fish competitors on Lake Trout trophic ecology in sub-arctic lakes

Hulsman, Mark F. Unknown Date
No description available.
68

Impact of prey availability and diet on stress in arctic foxes

McDonald, Ryan 15 January 2014 (has links)
Arctic food webs are characterized by multi-year predator-prey cycles. Arctic foxes (Vulpes lagopus) feed primarily on rodents, but also on avian and marine prey when rodents are scarce. I examined temporal variation in the arctic fox diet related to food availability and stress hormones (i.e. cortisol). Lemmings (Dicrostonyx richardsoni), goslings, and goose eggs were important components of the fall and winter diet. Goslings were important in fall, even when rodents were abundant. Lemmings were most important in winter, even when lemming densities were low. Consuming stored eggs did not reduce cortisol concentrations, suggesting that arctic foxes do not prefer stored eggs to lemmings. I also found that prey hormones increased fecal hormone concentrations of captive arctic foxes, introducing an additional caution for hormone studies involving predators. Nonetheless, relationships between stress hormone concentrations and changes in food availability can provide insight regarding the importance of food sources to consumer populations.
69

Ontogenetic Shifts in Diet and Habitat by Juvenile Green Sea Turtles (Chelonia mydas) along the Middle and Lower Texas Coast

Howell, Lyndsey 2012 August 1900 (has links)
Effective population management of green sea turtles (Chelonia mydas) necessitates understanding the temporal variation in foraging grounds used in ontogenetic stages, and the effect that the assimilated diet within those habitats has on nutritional gain, growth and eventual reproductive output. Texas coastal waters provide foraging grounds critical to meeting the nutritional needs of green turtles during early life history. To characterize temporal shifts in foraging strategy stomach contents combined with stable carbon (delta13C) and nitrogen (delta15N) isotopes of scute tissue were examined across size classes of stranded juvenile green turtles from the middle and lower Texas coast during 2007-2010. Findings from dietary analysis generally corroborated those from stable isotopes in scute samples. Results indicate green sea turtles exhibit multiple shifts in diet and habitat along the Texas coast. Although isotope values in the tissues of some <25 cm SCL turtles signified recent recruitment to jetty habitat, most in this size class exhibited depleted delta13C and enriched delta15N values indicative of oceanic life. Reinforcing oceanic occupancy from stable isotope results was forage material dominated by oceanic items such as Sargassum spp., Scyphozoa spp., and plastic debris. Diet analysis of 25-34.9 cm SCL turtles implied regional differences existed in macroalgae and seagrass consumption. Enriched delta13C and delta15N values in newest scute suggest most turtles inhabited the jetty environment, where macroalgae is the most available forage. A definitive shift by >35 cm SCL turtles to inshore seagrass habitat was revealed by a diet of seagrasses and tissue enriched in delta13C and depleted in delta15N. This is the first study to integrate stomach contents of several green turtle size classes with tissue analysis of stable isotopes. The combination of these techniques provided an assessment of the effectiveness of stable isotope analyses in documenting diet and habitat shifts. Stomach content examination determined the most recent diet consumed within the habitat occupied, whereas stable isotope analysis provided a time-integrated synopsis of diet and habitat shifts. Findings indicate integration of stomach content and stable isotope analysis is highly effective for characterizing habitat use and foraging strategy of ontogenetic-stage green sea turtles.
70

Influences of a <i>Cladophora</i> Bloom on the Diets of <i>Amblema Plicata </i>and <i>Elliptio Dilatata</i> in the Upper Green River, Kentucky

Yates, Jennifer Maria 01 December 2012 (has links)
Freshwater mussels are the most imperiled group of freshwater invertebrates globally. Recent research suggests a better understanding of mussel feeding ecology may facilitate and improve conservation efforts. The use of stable isotopes is becoming an increasingly common method to study aquatic food webs. Carbon (C) and nitrogen (N) are two of the most frequently employed elements in food web studies. Differences in natural abundance of 13C/12C can indicate which food sources are the basal sources of carbon incorporated into a consumer’s tissue, while the ratio of 15N /14N provides a method of assessing trophic position within a food web. Attached macroalgae, including the genus Cladophora, may be the dominant primary producers in running water systems. Cladophora, however, has not yet been indicated as a prominent assimilated food source for freshwater mussels. The overall purpose of this study was to assess if the diet of two common Green River mussel species, Amblema plicata (Say) and Elliptio dilatata (Rafinesque) were influenced by the seasonal change in availability of Cladophora during a summer-autumn rapid growth period. Two specific questions were asked: 1) Are the assimilated diets different between control and treatment areas, and 2) are the assimilated diets influenced by differing Cladophora levels across the study period? A mesocosm approach was employed in order to manipulate Cladophora levels within a treatment area. Seventy-two mussels, 36 each species, were sampled across four months,twice between control (= reach-scale, heavy Cladophora cover) and treatment (= localscale removal of Cladophora) areas. The freeware program, IsoSource, a concentration weighted linear mixing model, was used to determine the potential contribution of potential food sources to the diet of both mussel species. IsoSource revealed that Cladophora was the primary assimilated food source for both species across the study period. Although assimilated diets were not different between control and treatment areas, diets were, however, influenced by Cladophora availability across time. The results of this study indicate that, during bloom conditions, Cladophora is the primary carbon source for both A. plicata and E. dilatata and may form the base of food webs in the upper Green River.

Page generated in 0.0383 seconds