• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 6
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 86
  • 22
  • 13
  • 11
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Whole-Rock Pb Isotope Delineation of Archean and Paleoproterozoic Crustal Terranes in the Grenville Province and Adjacent Makkovik Province: Evidence for Juvenile Crustal Growth during the Paleoproterozoic

Arcuri, Gabriel January 2016 (has links)
The Grenville Province and adjacent Makkovik Province represent two long-lived ancient orogenic belts that contain remnants of Paleoproterozoic crust accreted to the southeastern Laurentian margin during the Great Proterozoic Accretionary Orogen (GPAO). However, the addition of juvenile Paleoproterozoic crust to the Archean craton during this period was followed by a span of intermittent ensialic arc magmatism and high-grade metamorphism that overprinted much of the early- to mid- Proterozoic geologic history of the region. As a result, these ancient orogenic belts contain cryptic terrane boundaries that require extensive geochronologic mapping in order to reconstruct the accretionary and collisional growth of the southeastern Canadian Shield. Accreted Proterozoic terranes in the Grenville and Makkovik Provinces have been previously mapped using Nd isotopes in order to determine their crustal formation ages and the boundaries between them. Since the U-Pb isotope system has completely different chemical behaviour to the Sm-Nd system, whole-rock Pb isotope analysis provides an independent method to test the results of Nd isotope analysis. Likewise, Pb isotope mapping acts as a useful tool for determining the exhumation of highly metamorphosed crust, as uranium is preferentially transported from lower crustal levels into the upper crust during regional metamorphism. Therefore, whole-rock Pb isotope analysis was performed on over 200 Archean and Proterozoic gneisses from the SW Grenville Province and Makkovik Province in order to 1) differentiate areas of accreted Paleoproterozoic crust from the reworked Archean margin, 2) test the location of the Archean-Proterozoic suture previously mapped in both regions by Nd model ages, and 3) investigate the variable degrees of crustal burial-uplift within the Archean foreland of the SW Grenville Province that was exhumed during the Grenville orogeny. In the Makkovik Province, whole-rock Pb isotope data from the Cape Harrison domain are comparable with published Pb data from the central Ketilidian mobile belt of southern Greenland. The similarity in Pb signatures between the two belts points to a crustal component in the Cape Harrison domain that was derived from a Proterozoic mantle-derived source with minimal input from older Archean crust. This is largely different from published Pb signatures for the Aillik domain in southeastern Labrador and border zone in southern Greenland that suggests a crustal component comprised of reworked Archean crust analogous to the pre-Makkovikian Laurentian foreland. Comparison of new and published Pb data from the Makkovik Province and southern Greenland in turn helps to constrain a revised single arc accretionary model for the Makkovik Province. Previous Nd isotope mapping in the SW Grenville Province revels a break in model ages inferred by authors as a cryptic collisional suture between the reworked Archean foreland and an accreted Paleoproterozoic arc. However, some workers have suggested that this terrane actually consists of Archean crust that was magmatically reworked in the Mesoproterozoic. Whole-rock Pb isotope data presented in this study points to a crustal component south of the proposed suture in Ontario that was derived from a Paleoproterozoic mantle source and subsequently reworked by ensialic arc magmatism during the Mesoproterozoic. North of the suture, Pb data reveals an Archean crustal component analogous to reworked Superior basement that was exhumed from different crustal levels during the Grenville orogeny. Here, regions of anomalously radiogenic and unradiogenic Pb signatures differentiate the Archean-Proterozoic suture in Ontario from a tectonic duplex in western Quebec. / Thesis / Master of Science (MSc)
52

Behavior of lutetium-hafnium, samarium-neodymium and rubidium-strontium isotopic systems during processes affecting continental crust.

Barovich, Karin Marie. January 1991 (has links)
Combined Lu-Hf, Sm-Nd and Rb-Sr isotopic studies of continental crustal rocks were undertaken to assess the relative effects of secondary crustal processes on isotopic systematics of whole-rock systems. The processes studied include ductile deformation, and three cases of hydrothermal alteration, involving fluids of varying composition. The Rb-Sr system proved to be easily disturbed during all secondary processes, while Sm-Nd and Lu-Hf systems were, for the most part, resilient. These results show that Nd or Hf isotopic information obtained from old rocks that have undergone typical crustal deformational and alteration events can be counted on to be equally reliable. Nd and Hf isotopic analyses were performed on four suites of Early Archean felsic gneiss complexes from Greenland, Labrador, Swaziland, and Michigan to explore questions associated with Early Archean crustal growth. The Sm-Nd isotopic data yield initial ∊(Nd) values that are mostly consistent with published age data for the suites. Calculations show limited scatter may be attributed to subtle changes in the Sm/Nd ratio or Nd isotopic composition. The Hf isotopic results are more variable and complex than the Nd results. The relevance of the studies on isotopic mobility in the first part of this work is that they have demonstrated that Nd and Hf isotopes are equally resilient during a range of secondary crustal processes. Given the robustness of the Nd isotopic data from the Archean samples, however, it seems unreasonable to attribute the much wider variation in Hf isotopic data to post-Archean isotopic disturbances. Differences in initial Hf isotopic ratios from differing magma sources seem called for. Nd and Hf whole-rock analyses of a Late Archean pristine garnet-bearing granitoid complex from northern Canada point out the importance of garnet in fractionating Lu/Hf ratios, and in developing anomalous ∊(Hf) signatures in potential source regions. Calculations show that even short-lived upper mantle/lower crustal heterogeneities, products of previous partial melting events involving garnet fractionation, can develop the range of positive and negative ∊(Hf) values seen in the Early Archean samples.
53

APPLICATION OF STABLE ISOTOPES OF OXYGEN, HYDROGEN, AND CARBON TO HYDROGEOCHEMICAL STUDIES, WITH SPECIAL REFERENCE TO CANADA DEL ORO VALLEY AND THE TUCSON BASIN (GEOCHEMISTRY, ISOTOPE, CARBON-14).

CHENG, SONG-LIN. January 1984 (has links)
Hydrogeochemical studies are generally qualitative in nature. The goal of this study is to investigate the possibility of quantitative interpretation of hydrogeochemistry by considering the chemical characteristics and the isotopic compositions of oxygen, hydrogen, and carbon of the water. This study examines ephemeral stream and well waters from Canada del Oro valley, southern Arizona. By chemical and isotopic considerations, this study finds that the change of chemical composition of the wash water was mainly due to water-rock interaction. The concentrations of dissolved constituents increase between 10 to 50% from upstream to downstream samples, while the evaporation loss of water is less than 3%. By chemical and isotopic considerations of the well waters, this study identifies three recharge waters in the CDO ground-water system. The chemical and water isotopic compositions of the well waters are results of mixing between these three recharge waters and subsequent dissolution of the aquifer. By thermodynamic consideration, albite, kaolinite, montmorillonite, and calcite are the main phases that influence the chemical characteristics of this ground-water system. Simulations with the computer program PHREEQE verifies the above conclusions. The mechanisms that influence the chemical and carbon isotopic compositions of the water are quite different in a system open to a CO2 gas reservoir than in a closed system. Deines, Langmuir, and Harmon (1974) derived a set of chemical-isotopic equations to calculate the carbon isotopic composition of water under open system condition. Wigley, Plummer, and Pearson (1978) formulated a mass transfer equation to calculate the change of carbon isotopic composition of natural water in closed system environment. This study implements these two type of equations as a subroutine--CSOTOP to the computer program PHREEQE. With this PHREEQE-CSOTOP package, the evolution of carbon chemical and isotopic composition of natural water can be conveniently modeled from open to closed system conditions. This study also uses this package to date water samples from the Tucson basin, and finds that choice of reaction path may cause a difference in carbon-14 age of up to a few thousand years. This study concludes that it is possible to rigorously interpret hydrogeochemistry in a quantitative way. With sufficient measurements to define the reaction path, followed by thermodynamic consideration, chemical-isotopic evaluation, and computer modeling, one should be able to achieve this goal.
54

Spot U-Pband Hf isotope analyses of detrital zircons from the khondalites in the western block of the North China craton

Xia, Xiaoping., 夏小平. January 2005 (has links)
published_or_final_version / abstract / Earth Sciences / Doctoral / Doctor of Philosophy
55

A PETROGRAPHIC, GEOCHEMICAL AND STABLE ISOTOPE STUDY OF THE UNITED VERDE OREBODY AND ITS ASSOCIATED ALTERATION, JEROME, ARIZONA

Gustin, Mae Sexauer January 1988 (has links)
The United Verde orebody, a Proterozoic volcanogenic massive sulfide deposit, is hosted by the Cleopatra Formation. The Cleopatra Formation is subdivided into two distinct members, the Upper and Lower, on the basis of alteration facies, whole rock geochemistry and the chemistry of alteration minerals. The Lower member was deposited prior to ore deposition and consists of five major alteration facies. Facies Bl, the most distant from the orebody represents the recharge area for the ore-forming fluid. Facies B2 surrounds the major discharge area or the chlorite pipe. These three facies contain chlorite and quartz as alteration minerals in variable amounts. Two facies, 81 and S2, contain quartz and sericite as alteration minerals. Mass balance calculations show progressive removal of Na and Ca, and addition of MgO and FeO* from the area of recharge (facies Bl) to facies B2 to the chlorite pipe. Whole rock δ¹⁸O values are high relative to least altered Cleopatra Formation in the recharge area and low in the discharge zone. Mineralogy and geochemistry of samples from the Upper member indicate that it was deposited following ore deposition and interacted with fluids rich in silica and iron. The hydrothermal fluid, which is interpreted to have been seawater, evolved to a high temperature slightly acidic, reduced fluid during water-rock interaction(log a₀₂ = -33 to -41; log a(H2S) = -2.6 to -5.0). The fluid δ¹⁸O and δ¹³C₀₂ values increased. Calculated δ¹³C₀₂ and δ¹⁸O fluid values, and sphalerite and chlorite chemistry imply that mixing of the hydrothermal fluid with seawater occurred in the orebody. the upper The levels of the chlorite pipe and in limited range in δ³⁴S values of sulfides is consistent with the derivation of the oreforming fluids from the reduced basal layer of a stratified basin. The study area represents only a small part of the United Verde circulation cell. Increased δ¹⁸O values of the fluid, and the need for a source of Mg, Fe and other metals suggest that the fluids may have circulated into the Shea Basalt.
56

Ground water pollution at sanitary landfill sites: geohydrological, environmental isotope and hydrochemical studies

Butler, Michael John January 1998 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements of the degree of Master of Science in Geology Johannesburg, 1998 / This study determines the potential of prerncting pollution to ground water by sanitary landfills. The tracing capabilities of both stable and radioactive environmental isotopes are also evaluated. Four landfills were selected, the Linbro Park and Waterval sites in Johannesburg, and the Bloemfontein northern and southern landfill sites. The sites all differ in geological environment, size. age and physiographic setting. [Abbreviated Abstract. Open document to view full version] / MT2017
57

Environmental changes associated with Native American land use practices a geoarcheological investigation of an Appalachian watershed /

Mihindukulasooriya, Lorita N. January 2009 (has links)
Thesis (M.S.)--Ohio University, November, 2009. / Title from PDF t.p. Includes bibliographical references.
58

Paleoproterozoic basins in the Trans-North China Orogen: stratigraphic sequences, U-PB ages and HF isotopes of detritalzircons and tectonic implications

Liu, Chaohui, 刘超辉 January 2011 (has links)
The Trans-North China Orogen (TNCO) has been recognized as a continent-continent collisional belt along which the Eastern and Western Blocks amalgamated to form the North China Craton. However, controversy has surrounded the timing and tectonic processes involved in the collision between the two blocks, ranging from the westward-directed subduction with final collision at ~2.5 Ga, through the west-dipping subduction with two collisional events at ~2.1 Ga and ~1.85 Ga, to the eastward-directed subduction with final collision at ~1.85 Ga. This project aims to present detailed lithostratigraphic, geochronological and isotopic data for the low-grade supracrustal successions in the TNCO to examine current models and to establish a reasonable scenario for the tectonic evolution of the TNCO in the Paleoproterozoic. The low-grade supracrustal successions include the Hutuo and Yejishan Groups in the middle sector of the TNCO and the Songjiashan, Lower Zhongtiao, Upper Zhongtiao, Danshanshi and Songshan Groups in the southern sector. Lithostratigraphic data indicate that the Songjiashan, Lower Zhongtiao Groups and lower parts of the Hutuo and Yejishan Groups are composed of metaclastic rocks, carbonates and metavolcanic rocks, interpreted as back-arc basin deposits, whereas the Upper Zhongtiao, Danshanshi, Songshan Groups and the upper parts of the Hutuo and Yejishan Groups consist only of metaconglomerates and metasandstones, interpreted as foreland basin deposits. To constrain the provenance and maximum depositional ages for these low-grade supracrustal successions, the LA-MC-ICP-MS technique was applied to analyze U-Pb and Hf isotopic compositions for detrital zircons from them. For the Hutuo and Yejishan Groups, we found major age peaks at ~2.5 and ~2.2 Ga and minor amounts of 2.8-2.6 Ga detrital zircons, which are consistent with ages of the lithological units in the middle sector of the TNCO. On the other hand, for the Songjiashan, Lower Zhongtiao, Upper Zhongtiao, Danshanshi and Songshan Groups, detrital zircons from them have the major age population of 2.85-1.95 Ma and the minor age population of 3.6-3.1 Ga, of which the former is comparable with ages of the lithological units in the southern sector of the TNCO and the latter was derived from the Paleoarchean and Mesoarchean crust of the Eastern Block. The maximum depositional ages of the low-grade supracrustal successions have also been well constrained in this study. For the back-arc basin deposits, their maximum depositional ages were constrained between ~2.15 and ~2.10 Ga. For the foreland basin deposits, the presence of ~1.85 Ga detrital zircons indicates that they were deposited after this time. Taken together, we present a brief scenario for the evolution of the sedimentary basins in the TNCO. At 2.15-2.10 Ga, a series of back-arc basins developed behind an “Andean-type” arc that were subsequently incorporated into the TNCO during the collision of the Eastern and Western Blocks. At ~1.85 Ga, the two blocks collided along the TNCO, resulting in the crustal thickening followed by rapid exhumation/uplift, which shifted the back-arc basins to foreland basins. Such a shift in the late Paleoproterozoic supports the model that the collision between the Eastern and Western Blocks occurred at ~1.85 Ga. / published_or_final_version / Earth Sciences / Doctoral / Doctor of Philosophy
59

Zinc-lead mineralization at Pering Mine in the Griqualand West sub-basin : an isotopic study.

Turner, Audrey Michelle. January 1992 (has links)
Detailed studies, both chemical and physical, have been performed on various dolomites and vug-filling carbonates, to determine the pathways and extent of the mineralizing fluids associated with the Pering Zn-Pb deposit within the Griqualand West sub-basin. Three carbonate phases were identified within the vugs using cathodoluminescence microscopy. The first phase formed a reaction rim on the host dolomites during the deposition of sphalerite and oscillatory zoned carbonate. Finally calcite was deposited, which is associated with post-mineralizing fluids. The vug-filling carbonates have very radiogenic 87Sr/86Sr values (0.72-0.76) compared with the host dolomites (0.70-0.73). The gangue carbonate minerals deposited within the vugs have similar radiogenic 87Sr/86Sr values to the gangue minerals of the main Pering orebody, indicating that the vugs formed part of the aquifer system through which the mineralizing fluids migrated. Radiogenic 87Sr was not acquired from the surrounding host dolomite. The mineralizing fluids may have picked up radiogenic 87Sr when migrating through porous rocks such as the Makwassie Quartz Porphyry of the Ventersdorp Supergroup or felsic rocks forming the Kaapvaal Craton. In addition, radiogenic Sr may have been acquired from dewatering of the Lokammona shales within the area, or expelled from amphibolite and granulite rocks involved in the Kheis or Namaqua Tectonic events. Two models are proposed to explain the genesis of the main Pering deposit and the occurrence of sphalerite in the vug-filling carbonates surrounding the deposit: 1) Mixing Model; and 2) Single Fluid Model. The Single Fluid Model is preferred which involves a single fluid migration and interaction with the carbonate host rock and/or pore fluid. The metals were probably transported as chloride complexes together with reduced sulphur at temperatures greater than 2000 C. Deposition of the ore minerals resulted from either a dilution of the fluid, a pH increase or a temperature decrease. Both dolomites and vug-filling carbonates have a model Pb age between 2.0 and 2.7. Secondary 1Ga model ages indicate a minor Namaqua tectonic influence. Carbon and oxygen isotopes indicate that the fluids originated in a deep burial environment. Future exploration work using cathodoluminescence microscopy and staining techniques will be both useful and cost-effective. Isotopic work should concentrate on the Rb-Sr system as radiogenic 87Sr/86Sr values are the best indicators of the path of the mineralizing fluid, and the proximity to ore concentrations. / Thesis (M.Sc.)-University of Natal, 1992.
60

Chemostratigraphy of Jurassic-cretaceous Italian carbonate platforms

Woodfine, Richard Gareth January 2002 (has links)
Samples of shallow-water carbonates were collected from Jurassic and Cretaceous Italian carbonate platforms and subjected to petrographic, diagenetic and chemostratigraphic analyses (<sup>87</sup>Sr/<sup>86</sup>Sr, δ<sup>13</sup>C<sub>carb</sub>, δ<sup>13</sup>C<sub>org</sub>, δ<sup>18</sup>O). In general, the new chemostratigraphic data generated reflect trends established by previous work, some of which has been carried out on biostratigraphically calibrated reference sections. Consequently, chemostratigraphic correlations (<sup>87</sup>Sr/<sup>86</sup>Sr, δ<sup>13</sup>C<sub>carb</sub>) of isotope profiles taken from platform carbonates with well-dated reference sections have allowed the application of high-resolution dating frameworks to the biostratigraphically poorly constrained carbonate platforms. The increased resolution in dating of the Italian carbonate platforms has, furthermore allowed a detailed investigation into the facies response of these carbonate platforms to major geological events. In particular, platform responses to oceanic anoxic events and other periods of major perturbation in the global carbon cycle are analysed (early Toarcian, Aalenian-Bajocian, Oxfordian-Tithonian, Valanginian-Hauterivian, Aptian-Albian, Cenomanian-Turonian, Coniacian-Santonian). Lower Jurassic levels of the Trento Platform record platform devastation in the early Toarcian synchronous with a major negative δ<sup>13</sup>C<sub>carb</sub> excursion, followed by platform recovery synchronous with a pronounced δ<sup>13</sup>C<sub>carb</sub> positive excursion and return to background values. The Campania-Lucania Platform shows negligible response to the oceanographic events of the early Toarcian even though the characteristic carbon-isotope profile is readily identifiable. The Trento Platform drowned at approximately the Aalenian-Bajocian Stage boundary, synchronously with a reproducible negative followed by positive δ<sup>13</sup>C<sub>carb</sub> excursion, whereas the Campania-Lucania Platform underwent a facies transition from oolite to cyclically bedded micrite. The Friuli Platform showed negligible depositional response to the carbon-cycle perturbations of the Kimmeridgian-Tithonian, Valanginian-Hauterivian, Aptian-Albian and Cenomanian- Santonian (as registered in the δ<sup>13</sup>C<sub>carb</sub> record). The Campania-Lucania Platform registered flooding and increased levels of organic-matter preservation coincident with pronounced positive δ<sup>13</sup>C<sub>carb</sub> excursions at Cenomanian-Turonian and Coniacian-Santonian levels. Observations on the responses of carbonate platforms to oceanographic conditions during periods of global carbon burial lead to the conclusion that temperature excess is a hitherto neglected control on global carbonate accumulation rates.

Page generated in 0.0636 seconds