• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 23
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Developing compound-specific stable isotope tools for monitoring landfill leachate

Benbow, Timothy J, n/a January 2008 (has links)
This thesis has developed a suite of compound specific stable isotope tools to monitor landfill leachate and identify the infiltration of leachate to ground water and surface water. These tools have the power to indicate the fractional contribution multiple discrete sources of pollution are making to a single location. This journey began by developing two solid phase extraction (SPE) methods to extract non-polar and polar organic compounds from leachate with minimal fractionation of hydrogen or carbon isotopes. Non-polar compounds were successfully extracted using ENV+ SPE cartridges and polar compounds were successfully extracted using Strata-X SPE cartridges. The isotopic fractionation of non-polar compounds during ENV+ extraction varied significantly (up to 245⁰/₀₀ and 1.8⁰/₀₀ for D and ��C respectively, when eluted with acetonitrile and ethyl acetate, as recommended by manufacturers) but the fractionation of compounds eluted with dichloromethane was negligible (less than instrumental precision). Polar compounds were eluted from Strata-X cartridges with negligible isotopic fractionation using methanol. The direct comparison of SPE and liquid-liquid extraction found SPE to extract slightly more compound from leachate then liquid-liquid extraction (especially for polar compounds) and the isotopic compositions of compounds did not change with extraction methods. These new analytical methods subsequently were used to determine the isotopic compositions of organic compounds dissolved in leachates from three New Zealand landfills. The molecular and isotopic signature of leachate varied significantly between landfills, indicating the isotopic fingerprint of organic compounds in leachate is unsuitable as a universal tracer of leachate. However, compounds such as terpien-4-ol, methylethylbenzene and juvabione maintained their isotopic composition over short geographical distance-indicating their potential as site-specific tracers of leachate. Organic compounds analysed on a transect across the landfill boundary indicated polar compounds were more mobile than semi-volatile compounds and possessed a more conservative isotopic composition. However, hexadecanoic acid extracted from leachate and ground water was highly depleted in ��C (-72 ⁰/₀₀ to -40⁰/₀₀), indicative of methanogenic and sulfate reducing bacteria. These bacteria only live in highly reducing environments such as leachate; therefore their presence in the pristine environment can potentially indicate the release of leachate from the landfill. The final experiments traced the uptake and utilisation of leachate by periphyton. The isotopic composition of bulk periphyton, fatty acids and phytol indicated that microbial assimilation and utilisation of nutrients is a complex process. Fatty acid biomarkers for green algae and diatoms showed signs of leachate derived nutrients, however the availability of nutrients (carbon, nitrogen, water and light) caused significant changes in metabolic processes and isotopic compositions. Under slow growing conditions, the [delta]��C composition of periphyton became enriched in ��C as solar irradiation levels decreased (including shading by detritus and periphyton), while the [delta]D composition of fatty acid was controlled by the internal recycling of hydrogen. This study indicated the power of compound specific isotope analysis as a tool to detect the release of landfill leachate from a landfill, especially at locations with multiple potential sources of contaminants, and provides a sound platform for future research.
12

Terrestrial input to estuarine bivalves as measured by multiple stable isotopes tracers.

LeBlanc, Caroline. Schwarcz, Henry P. Risk, Michael J. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1990. / Source: Dissertation Abstracts International, Volume: 62-13, Section: A, page: 0000.
13

Stable carbon isotope analysis of atmospheric nonmethane hydrocarbons using continuous-flow isotope ratio mass spectrometry

Gotoh, Akiko Allison. January 1900 (has links)
Thesis (Ph. D.)--University of California, Irvine, 2005. / Chair: Ralph J. Cicerone. Includes bibliographical references.
14

Geochemical characterization of high molecular weight organic material isolated from late Cretaceous fossils /

Ostrom, Margaret Harrigan. January 1990 (has links)
Thesis (Ph.D.) -- Memorial University of Newfoundland. / Typescript. Restricted until January 1992. Bibliography: leaves 180-195. Also available online.
15

Metabolic pathways in natural systems a tracer study of carbon isotopes /

Prater, James L. Chanton, Jeffrey P. January 2005 (has links)
Thesis (Ph. D.)--Florida State University, 2005. / Advisor: Jeffrey P. Chanton, Florida State University, College of Arts and Sciences, Dept. of Oceanography. Title and description from dissertation home page (viewed Jan. 26, 2006). Document formatted into pages; contains xii, 145 pages. Includes bibliographical references.
16

Assessing the value of stable water isotopes in hydrologic modeling: a dual-isotope approach

Holmes, Tegan 13 September 2016 (has links)
This thesis presents the development of a dual-isotope simulation in a hydrological model, and its application to the lower Nelson River basin. The purpose of this study is to find if the simulation of stable water isotopes aids in hydrological simulation, and if a dual-isotope simulation is an improvement over a single-isotope simulation. The isoWATFLOOD model was enhanced to include δ2H and improve physical representativeness. The model was calibrated using various isotope and flow simulation error functions. Internal hydrologic storages and fluxes were verified by comparing simulated isotope values to observed isotope data. Adding isotope error to the calibration resulted in small but consistent improvements to the physical basis of calibrated parameter values. Isotope simulation error was found to be the best predictor of streamflow simulation performance beyond the calibration period. The dual-isotope simulation identified a number of model limitations and potential improvements from the verification of internal hydrologic storages. / October 2016
17

The impact of N-3 pufa ingestion on metabolic, molecular and epigenetic responses to a short-term high-fat diet

Wardle, Sophie L. January 2015 (has links)
Obesity is widely considered a primary risk factor for type 2 diabetes (T2D). However, less is known about the early adaptive responses to short-term periods of high-fat energy excess (HFEE). Previous reports detailing whole-body adaptation to fat and energy oversupply are equivocal, perhaps, in part, owing to use of different experimental protocols, varying durations of dietary manipulation and participant cohorts with individuals of varying characteristics. In addition to use of different dietary protocols between studies, alterations in functional end-point measures due to the type of dietary fat consumed warrants consideration. Daily n-3 PUFA intake, commonly obtained from pelagic fish oil (FO) consumption, has been shown to positively associate with insulin sensitivity in epidemiological studies and thus may be a useful dietary strategy for slowing insulin resistance development. Chapter 2 of this thesis extends previous literature by demonstrating that 6 d HFEE (150 % habitual energy intake; 60 % of energy from fat) does not clearly alter whole- body insulin sensitivity, irrespective of FO consumption. However, investigation of metabolism at the tissue level, as presented in Chapter 3 of this thesis, offers insight into a potential tissue-specific level of regulation that precedes whole-body regulation. Skeletal muscle insulin signalling protein (e.g. protein kinase B (PKB)) activity, levels of certain ceramide species, and AMPK α2 activity were altered following HFEE and may explain the early maladaptive responses to short-term HFEE. Moreover, FO intake as 10 % of total fats mediated some of these molecular responses, including PKB and AMPK α2 activity, reflecting possible functional effects of FO at the subcellular level. Regulation of these metabolic / molecular responses at both the tissue and whole- body level can be explained, in part, by genetic predisposition, environmental influence and more recently epigenetics, including microRNAs (miRNAs). In Chapter 4, we characterised the plasma and skeletal muscle miRNA responses to HFEE and oral glucose ingestion. We demonstrate transient changes in levels of certain miRNAs following oral glucose ingestion in both tissue types and in response to HFEE in skeletal muscle. However, no significant correlations between basal plasma and skeletal muscle miRNA levels were observed, suggesting that our candidate plasma miRNAs may be co-ordinating functional changes in other tissue types. Plasma miR- 145-5p and skeletal muscle miR-204-5p predicted a significant proportion of the variance in mean whole-body insulin sensitivity change in response to HFEE. These data indicate that these miRNAs may be useful biomarkers of insulin resistance development following HFEE. A constraint of this thesis is that all conclusions are made within the context of statistically unaltered insulin sensitivity. Therefore, future investigations of diet-induced maladaptation should consider establishing a time course of insulin resistance development in response to HFEE, or use different study populations. Populations that are more susceptible to T2D development, e.g., overweight, sedentary individuals would be of particular interest. These data would aid development of a working model of diet-induced insulin resistance that has more direct application to T2D progression and extends the data presented herein.
18

The nitrogen and sulfur status and isotopes of soils within the vicinity of a coal-fired power station in South Africa

Angelova, Mia 02 May 2013 (has links)
A dissertation submitted to the Faculty of Science, University of Witwatersrand, in fulfilment of the requirements for the degree of Masters of Science Johannesburg, 2012. / Amplified loads of sulfate and nitrate have caused increased stress on soil systems in many areas of the world, as both are dominant components of acid rain. This is a critical environmental stress due to the damage caused to soil, water quality and ecosystem functioning. Issues concerning the rising emissions of these elements from local industries have begun to attract increasing attention in South Africa, as the rates of deposition in the Mpumalanga Highveld region alone is comparable to those experienced in First World countries. This study sought to investigate the use of natural stable isotopes of sulfur and nitrogen to identify the process transformations that these species undergo in environmental cycles. Total δ34S, δ15N and δ13C isotope signature of soils in the Mpumalanga region were combined with total elemental concentrations to determine the effect of deposition on the soil system. Soil samples from two soil depths (0 – 10 cm and 20 – 40 cm) were taken along a distance gradient from an identified pollution source, the Majuba power station. Long-term air quality data from the study area were also obtained from Eskom’s air quality monitoring stations, as well as sulfur and nitrogen deposition data from selected literature. Elemental concentrations decreased with soil depth as expected, while sites located approximately 25 km downwind of the power station were seen to contain higher concentrations of both soil sulfur and nitrogen. The mean per site soil sulfur concentration across all depths ranged from 0.009 % to 0.048 %, while the mean per site nitrogen concentration across all depths ranged from 0.056 % to 0.346 %. The mean soil carbon concentration in the top-soils ranged from 0.97 % to 7.93 %, and decreased in the sub-soils to 0.490 % to 3.270 %.The mean δ34S value for the top-soils was found to be 8.28 ‰ and increased to 10.78 ‰ in the sub-soils. Soil δ15N also increased with soil depth from 6.55 ‰ to 8.28 ‰. Soil δ13C values were seen to increase from -12.83 ‰ in the top-soils to -11.90 ‰ in the sub-soils. Lighter δ34S values at the surface may be due to anthropogenic deposition. The positive δ34S shift was attributed to a two-source mixing model (atmospheric deposition and bedrock) and isotopic fractionation processes that occur within the soil profile. The δ15N values of the top-soil were higher than what is expected if all nitrogen was derived from atmospheric nitrogen gas fixation. The increase in δ15N with depth suggested that isotope fractionation occurred during nitrogen export due to the faster reaction rate of 14N compared to 15N. The soil δ13C values indicated a typical C4 grassland system. New carbon at the top-soil depths was enriched in 13C due to the slower decay of 13C-depleted lignin; whereas in the sub-soils microbial recycling of carbon dominates and explained the higher 13C content of the older carbon. The conceptual framework presented for this project involves simultaneous processes of deposition and export in the soil system. This was particularly true for sulfur, where sites with lower isotope values had lower soil sulfur concentrations and vice versa. This indicates that high levels of deposition correspond to high net export. The sulfur and nitrogen isotopic signatures could not be used to as a direct means of source identification; however, the effectiveness of isotopes in elucidating transfer of these nutrients in the soil system was illustrated.
19

DEVELOPMENT AND APPLICATION OF METHODS FOR STABLE WATER ISOTOPE SAMPLING FROM A LOW GRADIENT CANAL

Unknown Date (has links)
Stable isotopes of water are used as tracers for characterizing surface water/groundwater interactions. Gaps in sampling protocol for these tracers in low gradient canals limits their use in studies of canal-groundwater exchanges. Several sampling methods were developed to determine the temporal and spatial isotopic variation in a canal. The influence of a flow control gate on isotopic composition and the sensitivity of isotope mixing calculations to choice of sampling method were also evaluated. There was little variability in the isotopic composition of the canal along a cross section perpendicular flow. Some variation occurred monthly and seasonally. The greatest variability occurred between the upstream and downstream side of the flow control gates when the gates were closed. Mixing calculations were not sensitive to the choice of sampling method. This study shed light on isotope sampling methods in canals for canal-groundwater interactions studies. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
20

The muscle specific protein synthesis response to acute running exercise utilizing multiple stable isotope tracers

Crane, Justin D. January 2008 (has links)
The purpose of this study was to compare the anabolic response to acute running exercise in two different leg muscles in endurance-trained men using two different stable isotope tracers. 6 male subjects (26±2 yr; V02max 63±2 ml•kg-' •min-') performed a 45 min treadmill run at 77±1 % intensity. Infusions of d3-leucine and d5-phenylalanine were used to measure mixed muscle FSR at rest and 24 hr post-exercise. An additional infusion of 10% amino acid solution was added to the post-exercise infusion to maximize the muscle anabolic response. Muscle biopsies were obtained from the vastus lateralis (VL) and soleus (SOL) at 2 and 6 hr of the infusion for the measurement of isotope incorporation. Additional muscle biopsies were obtained prior to and 4 hr post-exercise for determination of muscle glycogen use. At rest FSR was similar between the VL and SOL using either tracer (p>0.05). At 24 hr post-exercise FSR was elevated in both muscles, independent of the tracer used (p<0.05). Muscle glycogen was decreased to the same extent in both muscles by -31% at 4 hr post-exercise (p<0.05). These data suggest that the VL and SOL muscles are both stimulated similarly during 45 min of level grade running. Additionally, both muscles respond similarly 24 hr post-exercise, independent of the tracer used for the determination of protein synthesis. / School of Physical Education, Sport, and Exercise Science

Page generated in 0.0671 seconds