Spelling suggestions: "subject:"iteração dde poser"" "subject:"iteração dde loser""
1 |
Existência e multiplicidade de soluções para sistemas de equações de Schrödinger semilineares em Rnde Souza Rabelo, Paulo 31 January 2008 (has links)
Made available in DSpace on 2014-06-12T18:28:27Z (GMT). No. of bitstreams: 2
arquivo581_1.pdf: 552963 bytes, checksum: 9eb5fcb8fb1b04a21127f2d0adb95818 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2008 / Universidade Federal de Sergipe / Neste trabalho, estudamos questões relacionadas à existência e multiplicidade de soluções do
tipo estacionária para uma classe de sistemas de equações de Schrödinger com potenciais mudando
de sinal e não-linearidades ilimitadas na variável x. Consideraremos diversos tipos de
crescimento para o termo não-linear. Na obtenção de nossos resultados usamos métodos variacionais
do tipo mini-max e teoria de regularidade de equações elípticas de segunda ordem
|
2 |
Existência e multiplicidade de soluções para uma classe de equações de Schrödinger com expoente supercríticoMoreira Neto, Sandra Imaculada 30 June 2014 (has links)
Made available in DSpace on 2016-06-02T20:27:41Z (GMT). No. of bitstreams: 1
5967.pdf: 689681 bytes, checksum: a9967726690acb5b17c1cb1b10fddbfe (MD5)
Previous issue date: 2014-06-30 / Neste trabalho, estabelecemos a existência e multiplicidade de soluções para uma classe de equações de Schrodinger quase lineares com não linearidades subcrítica ou supercrítica. A fim de utilizarmos métodos variacionais, aplicamos uma mudança de variável para reduzirmos as equações quase lineares a equações semilineares, cujos funcionais associados estão bem definidos em um espaço de Banach reflexivo, e em alguns casos, eles estão bem definidos em espaços de Sobolev clássicos. Nosso principal foco e tratar não linearidades supercríticas, e nossa principal dificuldade e a perda das imersães de Sobolev tanto contínuas quanto compactas. Para contornar isso, no primeiro problema, inspirados por [4], impomos condições de integrabilidade que relacionam as não linearidades, as quais podem mudar de sinal e necessitamos também, nesse caso, de provar a existência do primeiro autovalor para o operador Lu = Au A(u2)u, usando para isso os métodos de bifurcação e sub e supersolução. No outro problema, nos baseamos num argumento de truncamento, introduzido por del Pino e Felmer em [27], assim o problema fica reduzido a um problema subcrítico. E seguimos com a prova dos resultados usando métodos variacionais combinados com a iteração de Moser. Estabelecemos também a existência de solução para um problema ressonante, cuja prova faremos usando uma variação do Teorema de Operadores Monítonos, encontrado em [29].
|
Page generated in 0.0683 seconds