Spelling suggestions: "subject:"iterative boltzmann inversion"" "subject:"iterative holtzmann inversion""
1 |
Multiresolution Coarse-Grained Modeling of the Microstructure and Mechanical Properties of Polyurea ElastomerJanuary 2020 (has links)
abstract: Polyurea is a highly versatile material used in coatings and armor systems to protect against extreme conditions such as ballistic impact, cavitation erosion, and blast loading. However, the relationships between microstructurally-dependent deformation mechanisms and the mechanical properties of polyurea are not yet fully understood, especially under extreme conditions. In this work, multi-scale coarse-grained models are developed to probe molecular dynamics across the wide range of time and length scales that these fundamental deformation mechanisms operate. In the first of these models, a high-resolution coarse-grained model of polyurea is developed, where similar to united-atom models, hydrogen atoms are modeled implicitly. This model was trained using a modified iterative Boltzmann inversion method that dramatically reduces the number of iterations required. Coarse-grained simulations using this model demonstrate that multiblock systems evolve to form a more interconnected hard phase, compared to the more interrupted hard phase composed of distinct ribbon-shaped domains found in diblock systems. Next, a reactive coarse-grained model is developed to simulate the influence of the difference in time scales for step-growth polymerization and phase segregation in polyurea. Analysis of the simulated cured polyurea systems reveals that more rapid reaction rates produce a smaller diameter ligaments in the gyroidal hard phase as well as increased covalent bonding connecting the hard domain ligaments as evidenced by a larger fraction of bridging segments and larger mean radius of gyration of the copolymer chains. The effect that these processing-induced structural variations have on the mechanical properties of the polymer was tested by simulating uniaxial compression, which revealed that the higher degree of hard domain connectivity leads to a 20% increase in the flow stress. A hierarchical multiresolution framework is proposed to fully link coarse-grained molecular simulations across a broader range of time scales, in which a family of coarse-grained models are developed. The models are connected using an incremental reverse–mapping scheme allowing for long time scale dynamics simulated at a highly coarsened resolution to be passed all the way to an atomistic representation. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2020
|
2 |
Simulations multi-échelles de matériaux polymères / Multiscale modelling of polymersMaurel, Gaëtan 24 November 2014 (has links)
Les matériaux polymères sont aussi bien utilisés dans des applications de la vie courante que dans des domaines de haute technologie. Ces matériaux font intervenir des échelles spatiales et temporelles variées et étendues, rendant la modélisation de leurs propriétés inaccessible avec une seule méthode. Cette thèse propose le développement d’une stratégie multi-échelle, couplant ainsi plusieurs niveaux de représentation de la matière. Le but est d’accéder aux propriétés rhéologiques d’un polymère, faisant intervenir des temps de relaxation lents, tout en conservant les caractéristiques chimiques intrinsèques à sa microstructure de façon à pouvoir établir des relations structure-propriétés. Les potentiels d’interaction de l’échelle mésoscopique sont développés à partir des configurations atomistiques. Ils permettent ensuite une reproduction quantitative de plusieurs propriétés structurales du polymère, telles que la masse volumique ou la distance bout à bout. La transférabilité des potentiels mésoscopiques a été étudiée à travers la dépendance des propriétés thermomécaniques en température, en pression et en nature du polymère. À partir de ces potentiels, des simulations hors équilibre ont permis de déterminer des grandeurs caractéristiques comme la masse d’enchevêtrement ou le module élastique. L’approche multi-échelle est étendue à l’interaction polymère-silice, dans le but d’étudier l’impact des facteurs comme le degré de confinement ou la densité de greffage sur les propriétés dynamiques et structurales des chaînes au voisinage de la surface. / Polymer materials are widely used, both for everyday applications and in high-technology products. These materials involves a wide range of time and length scales, making the modelling of their properties challenging by using only one method. This thesis focuses on the development of a multiscale strategy, combining different levels of description of the matter. The aim is to reach the rheological properties of a polymer over a large time scale, while retaining the chemical structure inherent of its microstructure. The investigation of structure-property relationships will then be facilitated. The mesoscopic potentials are developped from atomistic configurations. A quantitative reproduction of several structural properties of the polymer such as density or end to end distance is obtained. Then, the transferability of the potentials has been studied through the dependence of temperature, pressure or polymer structure on thermomechanical properties. By using these potentials, nonequilibrium simulations have been carried out to calculate the entanglement mass and the plateau modulus. The multicale approach has been extended to model the polymer-silica interaction in order to study the impact of the degree of confinement or the grafting density on the dynamical and structural properties of polymer chains close to the surface.
|
Page generated in 0.1278 seconds