• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tuning Nanoparticle Organization and Mechanical Properties in Polymer Nanocomposites

Zhao, Dan January 2016 (has links)
Polymer nanocomposites (PNCs), mixtures of nanometer-sized particles and polymeric matrices, have attracted continuing interest over the past few decades, primarily because they offer the promise of significant property improvements relative to the pure polymer. It is now commonly accepted in the community that the spatial organization of nanoparticles (NPs) in the polymer host plays a critical role in determining the macroscopic properties of the resulting PNCs. However, till date there is still dearth of cost-effective methods for controlling the dispersion of NPs in polymeric hosts. In this dissertation, we are dedicated to developing practically simple and thus commercially relevant strategies to controllably disperse NPs into synthetic polymer matrices (both amorphous and semicrystalline). We first investigate the influence of casting solvent on the NP spatial organization and the thermomechanical properties in a strongly attractive PNC consisting of bare silica NPs and poly(2-vinylpyridine) (P2VP) hosts cast from two different solvents - methylethylketone (MEK) or pyridine. In MEK, we show that P2VP strongly adsorbs onto the silica surface, creating a stable bound polymer layer and thus helping sterically stabilize the NPs against agglomeration. On the contrary, in pyridine, P2VP does not adsorb on the silica NPs, and the phase behavior in such case is a subtle balance among electrostatic repulsion, polymer-induced depletion attraction, and the kinetic slowdown of diffusion-limited NP aggregation. Using Brillouin light scattering, we further show that in pyridine-cast films, there is a single acoustic phonon, implying a homogeneous mixture of silica and P2VP on the mesoscopic scales. However, in MEK-cast samples, two longitudinal and two transverse acoustic phonons are probed at high particle content, reminiscent of two metastable microscopic phases. These solvent-induced differences in the elastic mechanical behavior disappear upon thermal annealing, suggesting that these nanocomposite interfacial structures in the as-cast state locally approach equilibrium upon annealing. Next, to disperse silica NPs into an energetically unfavorable polystyrene (PS) matrix in a controllable fashion, we have proposed a simple and robust strategy of adsorbing a monolayer of PS-b-P2VP block copolymer onto the silica surface, where the short P2VP block is densely coated around the silica particles and thus helps to reduce the inter-core attraction while the long PS block provides a miscible interface with the matrix chains. As a result, we have found that the silica particles can be uniformly dispersed in the PS matrices at a low grafting density of 0.01 chains/nm2. Even more interestingly, we have shown that the BCP coated NPs are remarkably better dispersed than the ones tethered with bimodal PS-P2VP brushes at comparable PS grafting characteristics. This finding can be reconciled by the fact that in the case of BCP adsorption, each NP is more uniformly coated by a P2VP monolayer driven by the strongly favorable silica-P2VP interactions. Since each P2VP block is connected to a PS chain we conjecture that these adsorbed systems are closer to the limit of spatially uniform sparse brush coverage than the chemically grafted case. Finally, we have examined the interplay between NP organization and polymer crystallization in a melt-miscible model semicrystalline nanocomposite comprised of poly(methyl methacrylate) or poly(methyl acrylate) grafted silica NPs in poly(ethyleneoxide) matrices. Here we have achieved active NP organization at a length scale of 10-100 nm by isothermal polymer crystallization. We have shown that the melt-miscible spherical NPs are engulfed by the polymer crystals and remain spatially well-dispersed for crystallization faster than a critical growth rate (G > Gc ~ 0.1 um/s). However, anisotropic sheet-like NP ordering results for slower G - the NPs are preferentially segregated into the interlamellar zone of the multiscale, hierarchical polymer crystal structure spanning lamellae (10-50 nm), fibrils (um) and spherulites (mm). This NP ordering is found to favorably impact the elastic modulus while leaving fracture toughness unaffected. We thus conclude that polymer crystal growth kinetics coupled to the unusual morphology of semicrystalline polymers represent a novel handle for in-situ fabricating hierarchical, anisotropic NP structures in a synthetic semicrystalline polymer, which could inspire significant applications.
2

Simulations multi-échelles de matériaux polymères / Multiscale modelling of polymers

Maurel, Gaëtan 24 November 2014 (has links)
Les matériaux polymères sont aussi bien utilisés dans des applications de la vie courante que dans des domaines de haute technologie. Ces matériaux font intervenir des échelles spatiales et temporelles variées et étendues, rendant la modélisation de leurs propriétés inaccessible avec une seule méthode. Cette thèse propose le développement d’une stratégie multi-échelle, couplant ainsi plusieurs niveaux de représentation de la matière. Le but est d’accéder aux propriétés rhéologiques d’un polymère, faisant intervenir des temps de relaxation lents, tout en conservant les caractéristiques chimiques intrinsèques à sa microstructure de façon à pouvoir établir des relations structure-propriétés. Les potentiels d’interaction de l’échelle mésoscopique sont développés à partir des configurations atomistiques. Ils permettent ensuite une reproduction quantitative de plusieurs propriétés structurales du polymère, telles que la masse volumique ou la distance bout à bout. La transférabilité des potentiels mésoscopiques a été étudiée à travers la dépendance des propriétés thermomécaniques en température, en pression et en nature du polymère. À partir de ces potentiels, des simulations hors équilibre ont permis de déterminer des grandeurs caractéristiques comme la masse d’enchevêtrement ou le module élastique. L’approche multi-échelle est étendue à l’interaction polymère-silice, dans le but d’étudier l’impact des facteurs comme le degré de confinement ou la densité de greffage sur les propriétés dynamiques et structurales des chaînes au voisinage de la surface. / Polymer materials are widely used, both for everyday applications and in high-technology products. These materials involves a wide range of time and length scales, making the modelling of their properties challenging by using only one method. This thesis focuses on the development of a multiscale strategy, combining different levels of description of the matter. The aim is to reach the rheological properties of a polymer over a large time scale, while retaining the chemical structure inherent of its microstructure. The investigation of structure-property relationships will then be facilitated. The mesoscopic potentials are developped from atomistic configurations. A quantitative reproduction of several structural properties of the polymer such as density or end to end distance is obtained. Then, the transferability of the potentials has been studied through the dependence of temperature, pressure or polymer structure on thermomechanical properties. By using these potentials, nonequilibrium simulations have been carried out to calculate the entanglement mass and the plateau modulus. The multicale approach has been extended to model the polymer-silica interaction in order to study the impact of the degree of confinement or the grafting density on the dynamical and structural properties of polymer chains close to the surface.

Page generated in 0.1487 seconds