• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 17
  • 17
  • 9
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TAp73α enhances the cellular sensitivity to cisplatin in ovarian cancer cells via the JNK signaling pathway

Zhang, Pingde., 张萍德. January 2011 (has links)
Ovarian cancer is the most lethal gynecological malignancy. Most of ovarian cancer patients relapse and subsequently die due to the development of resistance to chemotherapy. P73 belongs to the tumor suppressor p53 family. Like p53, the transcriptionally active TAp73 can bind specifically to p53 responsive elements and transactivates some of the p53 target genes, and finally leads to cell cycle arrest and apoptosis. TAp73 can be induced by DNA damage to enhance cellular sensitivity to anticancer agents in human cancer cells. However, the functions of TAp73 in ovarian cancer cells and the role in the regulation of cellular response to commonly used chemotherapeutic agents cisplatin are still poorly understood. The aims of this study were to examine the functions of TAp73 in ovarian cancer cells and its role in cellular response to cisplatin, as well as the relationship between TAp73 and p53 in ovarian cancer cells. Functional studies showed that over-expression of TAp73alpha (TAp73α) inhibited cell proliferation, colony formation ability and anchorage-independent growth of ovarian cancer cells, and this was irrespective of p53 expression status. In addition, TAp73α inhibited cell growth by arresting cell cycle at G2/M phase and up-regulating the expressions of G2/M regulators of p21, 14-3-3sigma and GADD45α. TAp73α enhanced the cellular sensitivity to cisplatin through the activation of JNK signaling pathway, at least partially, in ovarian cancer cells. TAp73α activated the JNK pathway through the up-regulation of its target gene GADD45α and subsequent activation of MKK4, the JNK up-stream kinase. Inhibition of JNK activity by a specific inhibitor (SP600125) or small interfering RNAs (siRNAs) significantly abrogated TAp73-mediated apoptosis induced by cisplatin. Moreover, the activations of MKK4, JNK and c-Jun were abolished when GADD45α was knocked down by siRNAs, and the JNK-dependent apoptosis was not observed. Collectively, these results supported that TAp73α was able to mediate apoptotic response to cisplatin through the GADD45α/MKK4/JNK signaling pathway, which was respective of p53 expression status. Further investigation on the relationship between TAp73α and p53 demonstrated that TAp73α increased p53 protein, but not mRNA expression by attenuating p53 protein degradation in wild-type p53 ovarian cancer cells. TAp73α could directly interact with p53 protein, which might interfere with the binding ability of MDM2 to p53, and consequently block the p53 protein degradation. In addition, TAp73α inactivated the Akt and ERK pathways and activated the p38 pathway in response to cisplatin in wild-type p53 OVCA433, but not in null-p53 SKOV3 cells, suggesting that the effect of TAp73α on these pathways might be p53-dependent. These results indicated that a functional cooperation of TAp73α and p53, to some extent, existed in ovarian cancer cells. In conclusion, this study demonstrated that TAp73α acted as a tumor suppressor in ovarian carcinogenesis. It promoted the cellular sensitivity to cisplatin via, at least partially, the activation of JNK signaling pathway. These TAp73α functions were irrespective of p53 expression. In addition, TAp73α was able to bind to p53 and increase p53 expression. / published_or_final_version / Obstetrics and Gynaecology / Doctoral / Doctor of Philosophy
2

Microglial LRP1 modulates JNK activation a signaling cascade that also regulates apolipoprotein E levels /

Pocivavsek, Ana. January 2009 (has links)
Thesis (Ph.D.)--Georgetown University, 2009. / Includes bibliographical references.
3

JNK activation and shear stress implications for adaptive and maladaptive signaling /

Hahn, Cornelia Su-Heng. January 2008 (has links)
Thesis (Ph. D.)--University of Virginia, 2008. / Title from title page. Includes bibliographical references. Also available online through Digital Dissertations.
4

Analysis of interactions between the germline RNA helicases (GLHs) and their regulators KGB-1 and CSN-5 in Caenorhabditis elegans

Orsborn, April Marie, January 2006 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. Includes bibliographical references.
5

Casein kinase I transduces WNT signals

Peters, John Michael. January 2005 (has links) (PDF)
Thesis (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2005. / Not embargoed. Vita. Bibliography: 105-114.
6

Defining the Role of c-Jun N-terminal Kinase (JNK) Signaling in Autosomal Dominant Polycystic Kidney Disease

Smith, Abigail O. 25 May 2021 (has links)
Polycystic kidney disease is an inherited degenerative disease in which the uriniferous tubules are replaced by expanding fluid-filled cysts that ultimately destroy organ function. Autosomal dominant polycystic kidney disease (ADPKD) is the most common form, afflicting approximately 1 in 1,000 people. It primarily is caused by mutations in the transmembrane proteins Polycystin-1 (PKD1) and Polycystin-2 (PKD2). The most proximal effects of polycystin mutations leading to cyst formation are not known, but pro-proliferative signaling must be involved for the tubule epithelial cells to increase in number over time. The stress-activated mitogen-activated protein kinase (MAPK) pathway c-Jun N-terminal kinase (JNK) promotes proliferation in specific contexts and is activated in acute and chronic kidney disease. Previous work found evidence of JNK activation in cystic tissues (Le et al., 2005) and others showed that JNK signaling is activated by aberrant expression of PKD1 and PKD2 in cell culture (Arnould et al., 1998; Arnould et al., 1999; Parnell et al., 2002; Yu et al., 2010) but the contribution of JNK signaling to cystic disease in vivo has not been investigated. This body of work describes the use of conditional and germline deletion of Pkd2, Jnk1 and Jnk2 to model ADPKD and JNK signaling inhibition in juvenile and adult mice. Immunoblots and histological staining were used to measure JNK activation and evaluate the effect of JNK deletion on cystic disease. Results show that Pkd2 deletion activated JNK signaling in juvenile and adult mice. Reduction of JNK activity significantly reduced cystic burden in kidneys of juvenile Pkd2 mutant mice. This correlated with reduced tubule cell proliferation and reduced kidney fibrosis. The improvement in cystic phenotype was driven primarily by Jnk1 deletion rather than Jnk2. JNK signaling inhibition in adult Pkd2 mutants significantly reduced liver cysts when mice were aged six months. JNK inhibition reduces the severity of cystic disease caused by the loss of Pkd2 suggesting that the JNK pathway should be explored as a potential therapeutic target for ADPKD.
7

Les récepteurs venus kinase (VKRs) de schistosoma mansoni : étude des voies de signalisation de SmVKR1 et rôle de la protéine adaptatrice SmShb / Schistosoma mansoni venus kinase receptors (VKRs) : SmVKR1 signaling pathways and role of the adaptor protein SmShb

Morel, Marion 23 March 2016 (has links)
La schistosomiase est une parasitose causée par un ver plat trématode du genre Schistosoma. Cette pathologie, responsable de près de 300 000 décès par an, est essentiellement due à la forte fécondité des vers et à l’accumulation des œufs dans les tissus de l’hôte. Pour lutter contre la pathologie, un seul traitement efficace, le Praziquantel, est utilisé en masse dans les régions endémiques. Afin de parer à l’apparition de résistances au Praziquantel, le développement de molécules régulant la ponte du parasite fait partie des solutions alternatives envisagées.Les récepteurs Venus Kinase (VKRs) forment une famille de récepteurs tyrosine kinase (RTKs) spécifique des invertébrés découverte au laboratoire chez le parasite Schistosoma mansoni. Les VKRs possèdent une structure atypique associant un domaine extracellulaire de fixation au ligand de type Venus Flytrap (VFT) associé à un domaine Tyrosine Kinase (TK) intracellulaire. Deux VKRs sont exprimés chez S. mansoni : SmVKR1 et SmVKR2. Ces deux récepteurs activent les voies de signalisation ERK, Akt et JNK et jouent un rôle dans la reproduction du parasite.Du fait de leur absence dans le génome de l’Homme, et de leur rôle potentiel dans la modulation de la reproduction et du développement des parasites, les SmVKRs constituent des cibles intéressantes pour lutter contre la schistosomiase.La première partie de mon travail de thèse expose les données acquises quant au rôle des RTKs dans la régulation de la reproduction des schistosomes. Nous avons pu montrer que la conservation des domaines catalytiques des différents RTKs ouvre la voie à l’élaboration de molécules pouvant inhiber simultanément plusieurs RTKs de schistosomes afin de lutter contre la schistosomiase en agissant sur la ponte du parasite.La seconde partie de mon travail met en évidence qu’en plus d’agir directement sur l’activité des RTKs, il est possible d’inhiber les voies qu’ils activent. En effet, un criblage d’inhibiteurs de protéines kinases a permis d’identifier les composants de la voie Akt comme cibles potentielles pour lutter contre la schistosomiase : des doses très faibles (de l’ordre du nM) de certains inhibiteurs d’Akt sont capables d’inhiber l’appariement des schistosomes et la ponte.Dans la dernière partie, nous montrons que la protéine adaptatrice SmShb interagit spécifiquement avec SmVKR1 phosphorylé. Cette interaction se fait par la liaison du domaine SH2 de SmShb sur une Tyrosine phosphorylée spécifique, située dans la région juxtamembranaire du récepteur (pY979). La formation de ce complexe induit la phosphorylation de SmShb et dirige le signal de SmVKR1 spécifiquement vers la voie JNK. Des expériences d’hybridation in situ ont mis en évidence une colocalisation des transcrits de SmShb avec ceux de Smvkr1 au niveau des organes reproducteurs des vers adultes, notamment au niveau des ovocytes matures et des testicules. Le knock-down de SmShb par ARN interférence conduit à une accumulation de spermatozoïdes dans les testicules des vers mâles. Parallèlement, un criblage par la technique du triple hybride, en utilisant SmShb phosphorylé par SmVKR1 comme appât, a permis l’identification de diverses protéines partenaires de SmShb. En raison des résultats précédents, notre attention s’est portée sur deux protéines partenaires pour lesquelles l’interaction avec SmShb a été confirmée. 1) La GTPase RhoU, qui possède des fonctions potentielles dans la signalisation JNK et sur la dynamique du cytosquelette. 2) Une chaine légère de la dynéine TcTex-1 possédant un rôle potentiel dans la motilité des spermatozoïdes. L’ensemble de ces résultats suggère un rôle de SmShb dans la régulation de l’activité de SmVKR1 en permettant la formation d’un complexe multi-protéique incluant des protéines impliquées dans l’organisation du cytosquelette. / Schistosomiasis is a parasitic disease caused by trematode flatworm species belonging to the genus Schistosoma. Responsible for about 300,000 deaths per year, the disease is mainly due to the high fertility of the worms and to encystment of eggs in host tissues. In order to fight against schistosomiasis, a single drug (Praziquantel) is efficient and massively distributed in endemic areas. To deal with the emergence of resistance to Praziquantel, one alternative is to consider the design of molecules that target parasite reproduction.Venus Kinase Receptors (VKRs) constitute an invertebrate Receptor Tyrosine Kinase (RTK) family initially discovered in the parasite Schistosoma mansoni. VKRs are atypical RTKs formed by an extracellular Venus Fly Trap (VFT) ligand binding domain associated via a transmembrane domain with an intracellular tyrosine kinase (TK) domain. Two VKRs are expressed in S. mansoni: SmVKR1 and SmVKR2. They both activate Erk, Akt and JNK signaling pathways and act on the parasite reproduction.As they are absent from the human genome and as they have potential roles in the modulation of reproductive processes and development of parasites, SmVKRs appear as attractive targets to fight schistosomiasis.The first part of my thesis work sets known data concerning the role of RTKs in schistosome reproduction. Here, we show that the catalytic domains are conserved across various RTKs and we open the perspective to design drugs which could inhibit several RTKs at the same time to control egg laying by schistosomes.The second part of my work describes the importance of using an alternative strategy of inhibiting downstream partners of RTKs. By screening a kinase inhibitor library, we defined the Akt pathway components as potential targets to fight schistosomiasis. Nanomolar doses of Akt inhibitors can inhibit schistosome pairing and egg laying.In the last part, we present the specific interaction of the adaptor protein SmShb with the phosphorylated form of SmVKR1. This binding occurs between the SH2 domain of SmShb and a phosphotyrosine residue (pY979) located in the juxtamembrane region of the receptor. That interaction leads to the phosphorylation of SmShb and promotes the signal of SmVKR1 towards a JNK pathway. In situ hybridization experiments highlighted that SmShb and Smvkr1 transcripts were both located in mature oocytes and testes of adult worms. RNA interference experiments using double-stranded RNA targeting SmShb led to an accumulation of mature sperm in testes of male worms. Finally, a yeast three hybrid screening, using SmShb phosphorylated by SmVKR1 as prey, allowed us to identify various protein partners. Taking advantage of previous results, we focused on two partners and confirmed their interaction with SmShb. 1) RhoU GTPase which has potential functions in JNK signalling and cytoskeleton dynamic. 2) The dynein light chain TcTex-1, with potential role in sperm motility. Altogether, this results argue for a potential role of SmShb in the regulation of the SmVKR1 activity by forming a multiprotein complex including proteins with various roles in cytoskeleton reorganization.
8

Investigating TNF inhibition of IGF-1 signalling via JNK in cell culture models of skeletal muscle atrophy

Gebski, Bijanka L. January 2009 (has links)
[Truncated abstract] The pro-inflammatory cytokine tumour necrosis factor (TNF) has a critical role in skeletal muscle atrophy. The catabolic effect of TNF is partially due to abrogation of the anabolic insulin-like growth factor 1 (IGF-1) signalling pathway. However, the precise signalling events that lead to the loss of myofibrillar protein following activation of TNF receptor are unknown. The over arching aim of the study is to determine the mechanisms of by which TNF induces atrophy in differentiated muscles cells. To achieve this aim a series of experiments were performed to: 1) investigate the molecular events that lead to TNF mediated myofibre atrophy, 2) determine to what extent c-Jun N-terminal Kinase (JNK) signalling plays a part in TNF induced myotube atrophy, and in TNF-mediated inhibition of IGF-1 induced hypertrophy, and 3) use inhibitors of JNK to block the catabolic effects of TNF. 1) To investigate the molecular events that lead to TNF mediated myofibre atrophy, the experiments were conducted using C2C12 mouse myotube cultures and primary myotube cultures derived from FVB mice, and transgenic mice which over-express Class 2 IGF-1 Ea in skeletal muscles (IGF:C2). The treatment of mature C2C12 and FVB primary myotubes (respectively at 7 and 4 days after fusion medium) with 10 ng/mL of TNF for 3 days resulted in statistically significant myotube atrophy (decreased mean width). The observed TNF-mediated atrophy has not previously been demonstrated in tissue cultured myotubes. In contrast, addition of IGF-1 (20 ng/ml) to 7 day C2C12 myotubes for 3 days resulted in significant hypertrophy. ... The most suitable inhibitor was TAT-TIJIP and was thus used in subsequent studies. Inhibition of JNK activity by TAT-TIJIP was confirmed indirectly by detecting nuclear translocation of c- Jun, which is a downstream target of phosphorylated JNK. Immunohistochemical analyses showed nuclear localisation and phosphorylation of c-Jun in TNF treated myotubes. Nuclear localisation and phosphorylation of c-Jun was not observed in cultures pre-treated with TAT-TIJIP before TNF treatment, nor in the untreated control myotubes. 3) The use of JNK inhibitors to block the catabolic effects of TNF was tested using C2C12 and primary myotube cultures. Pre-treatment of C2C12 and primary FVB myotubes with the JNK inhibitor TAT-TIJIP, 30 min before TNF administration (for 3 days) prevented myotube atrophy. The mean width of myotubes pre-treated with TATTIJIP prior to TNF treatment closely resembled that of the control myotubes. Administration of TNF in combination with TAT-TIJIP for 3 days to C2C12 myotubes prevented myotube atrophy and unexpectedly resulted in hypertrophy when compared to the mean widths of untreated and TAT-TIJIP treated myotubes. This trend was also demonstrated in the FVB primary cultures. These combined results strongly support the role of JNK in TNF-mediated atrophy. Preliminary studies were carried out in vivo using the mdx mouse model of muscular dystrophy, TAT-TIJIP was administered via intraperitoneal injection to the mice for 3 days at a dose of 10 mg/ml, however the results form this study are inconclusive. These novel observations are of considerable interest to the field of muscle wasting because they demonstrate for the first time TNF-mediated myotube atrophy, the role of JNK in situations of TNF induced muscle atrophy, and explore the use of JNK inhibitors to prevent muscle atrophy.
9

The characterization of TRUSS : a novel scaffolding protein in tumor necrosis factor-[alpha] receptor-1 signaling /

Terry, Jennifer L. January 2005 (has links)
Thesis (Ph.D. in Immunology) -- University of Colorado, 2005. / Typescript. Includes bibliographical references (leaves 190-212). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
10

Characterization of JNK Binding Proteins: A Dissertation

Rogers, Jeffrey Scott 27 July 2005 (has links)
The JNK signal transduction pathway mediates a broad, complex biological process in response to inflammatory cytokines and environmental stress. These responses include cell survival and apoptosis, proliferation, tumorigenesis and the immune response. The divergent cellular responses caused by the JNK signal transduction pathway are often regulated by spatial and cell type contexts, as well as the interaction with other cellular processes. The discovery of additional components of the JNK signal transduction pathway are critical to elucidate the stress response mechanisms in cells. This thesis first discusses the cloning and characterization of two novel members of the JNK signal transduction pathway. JIP1 and JMP1 were initially identified from a murine embryo library through a yeast Two-Hybrid screen to identify novel JNK interacting proteins. Full length cDNAs of both genes were cloned and analyzed. JIP1 represents the first member of the JIP group of JNK scaffold proteins which were characterized. The JNK binding domain (JBD) of JIP1 matches the D-domain consensus of other JNK binding proteins, and it demonstrates JNK binding both in vitro and in vivo. This JNK binding was demonstrated to inhibit JNK signal transduction and over-expression of JIP1 inhibits the JNK mediated pre-B cell transformation by bcr-abl. Over-expressed JIP1 also sequesters JNK in the cytoplasm, which may be a mechanism of the inhibition of JNK signaling. A new, high-resolution digital imaging microscopy technique using deconvolution demonstrated the absence of JNK1 in the nucleus of co-transfected JIP1 and JNK1 cells. The other protein discussed in this thesis is JMP1, a novel JNK binding, microtubule co-localized protein. There is a JBD in the JMP1 carboxyl end and a consensus D-domain within this region. The JMP1 JBD demonstrates an increased association with phospho-JNK from UV irradiated cells compared to un-irradiated cells in vivo. JMP1 also has 12 WD-repeat motifs in its amino terminal end which are required for microtubule co-localization. JMP1 demonstrates a cell cycle specific localization at the mitotic spindle poles. This co-localization is dependent on intact microtubules and the amino-terminal WD-repeats are required for this localization. JMP1 mRNA is highly expressed in testis tissues. Immunocytochemistry on murine testis sections using an affinity purified anti-JMP1 antibody demonstrates JMP1 protein in the lumenal compartment of the seminiferous tubules. JMP1 protein is expressed in primary and secondary spermatocytes, cells which are actively undergoing meiosis. The results obtained from the localization of JMP1 in meiotic spermatocytes led to an investigation of the roles of JNK signal transduction in the testis. The testis is an active region of cellular proliferation, apoptosis and differentiation, which make it an appealing model for studying JNK signal transduction. However, the roles JNK signaling have in the testis are poorly understood. I investigated the reproduction capability of Jnk3-/- male mice and discovered older Jnk3-/- males had a reduced capacity to impregnate females compared to younger animals and age-matched wild type controls. The testis morphology and sperm motility of these animals were similar to wild-type animals, and there was no alteration of apoptosis in the testis. The final section of this thesis involves the study of this breeding defect and investigating for cellular defects that might account for this age-related Jnk3-/- phenotype.

Page generated in 0.0615 seconds