• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 17
  • 17
  • 17
  • 17
  • 17
  • 9
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TAp73α enhances the cellular sensitivity to cisplatin in ovarian cancer cells via the JNK signaling pathway

Zhang, Pingde., 张萍德. January 2011 (has links)
Ovarian cancer is the most lethal gynecological malignancy. Most of ovarian cancer patients relapse and subsequently die due to the development of resistance to chemotherapy. P73 belongs to the tumor suppressor p53 family. Like p53, the transcriptionally active TAp73 can bind specifically to p53 responsive elements and transactivates some of the p53 target genes, and finally leads to cell cycle arrest and apoptosis. TAp73 can be induced by DNA damage to enhance cellular sensitivity to anticancer agents in human cancer cells. However, the functions of TAp73 in ovarian cancer cells and the role in the regulation of cellular response to commonly used chemotherapeutic agents cisplatin are still poorly understood. The aims of this study were to examine the functions of TAp73 in ovarian cancer cells and its role in cellular response to cisplatin, as well as the relationship between TAp73 and p53 in ovarian cancer cells. Functional studies showed that over-expression of TAp73alpha (TAp73α) inhibited cell proliferation, colony formation ability and anchorage-independent growth of ovarian cancer cells, and this was irrespective of p53 expression status. In addition, TAp73α inhibited cell growth by arresting cell cycle at G2/M phase and up-regulating the expressions of G2/M regulators of p21, 14-3-3sigma and GADD45α. TAp73α enhanced the cellular sensitivity to cisplatin through the activation of JNK signaling pathway, at least partially, in ovarian cancer cells. TAp73α activated the JNK pathway through the up-regulation of its target gene GADD45α and subsequent activation of MKK4, the JNK up-stream kinase. Inhibition of JNK activity by a specific inhibitor (SP600125) or small interfering RNAs (siRNAs) significantly abrogated TAp73-mediated apoptosis induced by cisplatin. Moreover, the activations of MKK4, JNK and c-Jun were abolished when GADD45α was knocked down by siRNAs, and the JNK-dependent apoptosis was not observed. Collectively, these results supported that TAp73α was able to mediate apoptotic response to cisplatin through the GADD45α/MKK4/JNK signaling pathway, which was respective of p53 expression status. Further investigation on the relationship between TAp73α and p53 demonstrated that TAp73α increased p53 protein, but not mRNA expression by attenuating p53 protein degradation in wild-type p53 ovarian cancer cells. TAp73α could directly interact with p53 protein, which might interfere with the binding ability of MDM2 to p53, and consequently block the p53 protein degradation. In addition, TAp73α inactivated the Akt and ERK pathways and activated the p38 pathway in response to cisplatin in wild-type p53 OVCA433, but not in null-p53 SKOV3 cells, suggesting that the effect of TAp73α on these pathways might be p53-dependent. These results indicated that a functional cooperation of TAp73α and p53, to some extent, existed in ovarian cancer cells. In conclusion, this study demonstrated that TAp73α acted as a tumor suppressor in ovarian carcinogenesis. It promoted the cellular sensitivity to cisplatin via, at least partially, the activation of JNK signaling pathway. These TAp73α functions were irrespective of p53 expression. In addition, TAp73α was able to bind to p53 and increase p53 expression. / published_or_final_version / Obstetrics and Gynaecology / Doctoral / Doctor of Philosophy
2

Microglial LRP1 modulates JNK activation a signaling cascade that also regulates apolipoprotein E levels /

Pocivavsek, Ana. January 2009 (has links)
Thesis (Ph.D.)--Georgetown University, 2009. / Includes bibliographical references.
3

JNK activation and shear stress implications for adaptive and maladaptive signaling /

Hahn, Cornelia Su-Heng. January 2008 (has links)
Thesis (Ph. D.)--University of Virginia, 2008. / Title from title page. Includes bibliographical references. Also available online through Digital Dissertations.
4

Analysis of interactions between the germline RNA helicases (GLHs) and their regulators KGB-1 and CSN-5 in Caenorhabditis elegans

Orsborn, April Marie, January 2006 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. Includes bibliographical references.
5

Casein kinase I transduces WNT signals

Peters, John Michael. January 2005 (has links) (PDF)
Thesis (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2005. / Not embargoed. Vita. Bibliography: 105-114.
6

Defining the Role of c-Jun N-terminal Kinase (JNK) Signaling in Autosomal Dominant Polycystic Kidney Disease

Smith, Abigail O. 25 May 2021 (has links)
Polycystic kidney disease is an inherited degenerative disease in which the uriniferous tubules are replaced by expanding fluid-filled cysts that ultimately destroy organ function. Autosomal dominant polycystic kidney disease (ADPKD) is the most common form, afflicting approximately 1 in 1,000 people. It primarily is caused by mutations in the transmembrane proteins Polycystin-1 (PKD1) and Polycystin-2 (PKD2). The most proximal effects of polycystin mutations leading to cyst formation are not known, but pro-proliferative signaling must be involved for the tubule epithelial cells to increase in number over time. The stress-activated mitogen-activated protein kinase (MAPK) pathway c-Jun N-terminal kinase (JNK) promotes proliferation in specific contexts and is activated in acute and chronic kidney disease. Previous work found evidence of JNK activation in cystic tissues (Le et al., 2005) and others showed that JNK signaling is activated by aberrant expression of PKD1 and PKD2 in cell culture (Arnould et al., 1998; Arnould et al., 1999; Parnell et al., 2002; Yu et al., 2010) but the contribution of JNK signaling to cystic disease in vivo has not been investigated. This body of work describes the use of conditional and germline deletion of Pkd2, Jnk1 and Jnk2 to model ADPKD and JNK signaling inhibition in juvenile and adult mice. Immunoblots and histological staining were used to measure JNK activation and evaluate the effect of JNK deletion on cystic disease. Results show that Pkd2 deletion activated JNK signaling in juvenile and adult mice. Reduction of JNK activity significantly reduced cystic burden in kidneys of juvenile Pkd2 mutant mice. This correlated with reduced tubule cell proliferation and reduced kidney fibrosis. The improvement in cystic phenotype was driven primarily by Jnk1 deletion rather than Jnk2. JNK signaling inhibition in adult Pkd2 mutants significantly reduced liver cysts when mice were aged six months. JNK inhibition reduces the severity of cystic disease caused by the loss of Pkd2 suggesting that the JNK pathway should be explored as a potential therapeutic target for ADPKD.
7

Investigating TNF inhibition of IGF-1 signalling via JNK in cell culture models of skeletal muscle atrophy

Gebski, Bijanka L. January 2009 (has links)
[Truncated abstract] The pro-inflammatory cytokine tumour necrosis factor (TNF) has a critical role in skeletal muscle atrophy. The catabolic effect of TNF is partially due to abrogation of the anabolic insulin-like growth factor 1 (IGF-1) signalling pathway. However, the precise signalling events that lead to the loss of myofibrillar protein following activation of TNF receptor are unknown. The over arching aim of the study is to determine the mechanisms of by which TNF induces atrophy in differentiated muscles cells. To achieve this aim a series of experiments were performed to: 1) investigate the molecular events that lead to TNF mediated myofibre atrophy, 2) determine to what extent c-Jun N-terminal Kinase (JNK) signalling plays a part in TNF induced myotube atrophy, and in TNF-mediated inhibition of IGF-1 induced hypertrophy, and 3) use inhibitors of JNK to block the catabolic effects of TNF. 1) To investigate the molecular events that lead to TNF mediated myofibre atrophy, the experiments were conducted using C2C12 mouse myotube cultures and primary myotube cultures derived from FVB mice, and transgenic mice which over-express Class 2 IGF-1 Ea in skeletal muscles (IGF:C2). The treatment of mature C2C12 and FVB primary myotubes (respectively at 7 and 4 days after fusion medium) with 10 ng/mL of TNF for 3 days resulted in statistically significant myotube atrophy (decreased mean width). The observed TNF-mediated atrophy has not previously been demonstrated in tissue cultured myotubes. In contrast, addition of IGF-1 (20 ng/ml) to 7 day C2C12 myotubes for 3 days resulted in significant hypertrophy. ... The most suitable inhibitor was TAT-TIJIP and was thus used in subsequent studies. Inhibition of JNK activity by TAT-TIJIP was confirmed indirectly by detecting nuclear translocation of c- Jun, which is a downstream target of phosphorylated JNK. Immunohistochemical analyses showed nuclear localisation and phosphorylation of c-Jun in TNF treated myotubes. Nuclear localisation and phosphorylation of c-Jun was not observed in cultures pre-treated with TAT-TIJIP before TNF treatment, nor in the untreated control myotubes. 3) The use of JNK inhibitors to block the catabolic effects of TNF was tested using C2C12 and primary myotube cultures. Pre-treatment of C2C12 and primary FVB myotubes with the JNK inhibitor TAT-TIJIP, 30 min before TNF administration (for 3 days) prevented myotube atrophy. The mean width of myotubes pre-treated with TATTIJIP prior to TNF treatment closely resembled that of the control myotubes. Administration of TNF in combination with TAT-TIJIP for 3 days to C2C12 myotubes prevented myotube atrophy and unexpectedly resulted in hypertrophy when compared to the mean widths of untreated and TAT-TIJIP treated myotubes. This trend was also demonstrated in the FVB primary cultures. These combined results strongly support the role of JNK in TNF-mediated atrophy. Preliminary studies were carried out in vivo using the mdx mouse model of muscular dystrophy, TAT-TIJIP was administered via intraperitoneal injection to the mice for 3 days at a dose of 10 mg/ml, however the results form this study are inconclusive. These novel observations are of considerable interest to the field of muscle wasting because they demonstrate for the first time TNF-mediated myotube atrophy, the role of JNK in situations of TNF induced muscle atrophy, and explore the use of JNK inhibitors to prevent muscle atrophy.
8

The characterization of TRUSS : a novel scaffolding protein in tumor necrosis factor-[alpha] receptor-1 signaling /

Terry, Jennifer L. January 2005 (has links)
Thesis (Ph.D. in Immunology) -- University of Colorado, 2005. / Typescript. Includes bibliographical references (leaves 190-212). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
9

Characterization of JNK Binding Proteins: A Dissertation

Rogers, Jeffrey Scott 27 July 2005 (has links)
The JNK signal transduction pathway mediates a broad, complex biological process in response to inflammatory cytokines and environmental stress. These responses include cell survival and apoptosis, proliferation, tumorigenesis and the immune response. The divergent cellular responses caused by the JNK signal transduction pathway are often regulated by spatial and cell type contexts, as well as the interaction with other cellular processes. The discovery of additional components of the JNK signal transduction pathway are critical to elucidate the stress response mechanisms in cells. This thesis first discusses the cloning and characterization of two novel members of the JNK signal transduction pathway. JIP1 and JMP1 were initially identified from a murine embryo library through a yeast Two-Hybrid screen to identify novel JNK interacting proteins. Full length cDNAs of both genes were cloned and analyzed. JIP1 represents the first member of the JIP group of JNK scaffold proteins which were characterized. The JNK binding domain (JBD) of JIP1 matches the D-domain consensus of other JNK binding proteins, and it demonstrates JNK binding both in vitro and in vivo. This JNK binding was demonstrated to inhibit JNK signal transduction and over-expression of JIP1 inhibits the JNK mediated pre-B cell transformation by bcr-abl. Over-expressed JIP1 also sequesters JNK in the cytoplasm, which may be a mechanism of the inhibition of JNK signaling. A new, high-resolution digital imaging microscopy technique using deconvolution demonstrated the absence of JNK1 in the nucleus of co-transfected JIP1 and JNK1 cells. The other protein discussed in this thesis is JMP1, a novel JNK binding, microtubule co-localized protein. There is a JBD in the JMP1 carboxyl end and a consensus D-domain within this region. The JMP1 JBD demonstrates an increased association with phospho-JNK from UV irradiated cells compared to un-irradiated cells in vivo. JMP1 also has 12 WD-repeat motifs in its amino terminal end which are required for microtubule co-localization. JMP1 demonstrates a cell cycle specific localization at the mitotic spindle poles. This co-localization is dependent on intact microtubules and the amino-terminal WD-repeats are required for this localization. JMP1 mRNA is highly expressed in testis tissues. Immunocytochemistry on murine testis sections using an affinity purified anti-JMP1 antibody demonstrates JMP1 protein in the lumenal compartment of the seminiferous tubules. JMP1 protein is expressed in primary and secondary spermatocytes, cells which are actively undergoing meiosis. The results obtained from the localization of JMP1 in meiotic spermatocytes led to an investigation of the roles of JNK signal transduction in the testis. The testis is an active region of cellular proliferation, apoptosis and differentiation, which make it an appealing model for studying JNK signal transduction. However, the roles JNK signaling have in the testis are poorly understood. I investigated the reproduction capability of Jnk3-/- male mice and discovered older Jnk3-/- males had a reduced capacity to impregnate females compared to younger animals and age-matched wild type controls. The testis morphology and sperm motility of these animals were similar to wild-type animals, and there was no alteration of apoptosis in the testis. The final section of this thesis involves the study of this breeding defect and investigating for cellular defects that might account for this age-related Jnk3-/- phenotype.
10

The c-Jun NH₂-Terminal Kinase Regulates Jun <em>in vitro</em> and <em>in vivo</em> during the Process of Dorsal Closure: A Dissertation

Sluss, Hayla Karen 12 December 1997 (has links)
Tyrosine phosphorylation of proteins by protein tyrosine kinases is an important step in initiating mitogenic signal transduction pathways. The receptor tyrosine kinases represent a class of protein kinases that employ phosphorylation cascades to transmit a signal generated at the cell surface. The AP-1 transcription factor is a common target of receptor tyrosine kinase activation, transformation by Ras-like proteins and activation of the MAP kinase pathway. The AP-1 complex contains a dimer of Jun proteins or a heterodimer of Jun and Fos or other bZip proteins. The transcriptional activation of Jun is enhanced by phosphorylation on residues Ser-63 and Ser-73. Therefore, identifying the regulatory proteins kinases of Jun would be an important link in signaling from the upstream cell surface events to downstream events, such as gene expression. The JNK1 protein kinase was identified and phosphorylates c-Jun at these sites. The JNK1 protein is a member of the JNK group of protein kinases, which are activated in response to UV treatment. JNK1 is the 46 kDa isoform, and the isolation of the 55 kDa isoform is described in this thesis. Furthermore, a role for JNK was established in Drosophila. Drosphila JNK (DJNK) is essential for the process of dorsal closure. The JNK protein kinases are involved in cytokine signaling, response to environmental stress and development.

Page generated in 0.4815 seconds