• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of the human heme oxygenase-1 gene

Hock, Thomas D. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Title from first page of PDF file (viewed Feb. 7, 2008). Includes bibliographical references (p. 50-57).
2

Role of the JNK Signal Transduction Pathway in Cell Survival: a Dissertation

Lamb, Jennifer A. 15 December 2004 (has links)
The c-Jun NH2-terminal kinases (JNK) are evolutionarily conserved serine/threonine protein kinases that are activated by proinflammatory cytokines, environmental stress, and genotoxic agents. These kinases play key regulatory roles within a cell by coordinating signals from the cell surface to nuclear transcription factors. JNK phosphorylates the amino terminal domain of all three Jun transcription factors (JunB, c-Jun and JunD) all members of the AP-1 family. The activated transcription factors modulate gene expression to generate appropriate biological responses, including cell migration, proliferation, differentiation and cell death. The role of the JNK signaling pathway in cell death/apoptosis is controversial, both pro-apoptotic and pro-survival roles have been attributed to JNK. The mechanism that enables the JNK signaling pathway to mediate both apoptosis and survival is unclear. The aim of this study is to examine the role of TNF-stimulated JNK activation on cell survival. The proinflammatory cytokine TNF, is known to activate JNK and induce apoptosis. To test whether the JNK signaling pathway contributes to TNF-induced apoptosis, the response of wild type and Jnk1-/- Jnk2-/- (JNK deficient fibroblasts) fibroblasts to TNF was examined. JNK deficient fibroblasts are more sensitive to TNF-induced apoptosis than wild-type fibroblasts. The TNF-sensitivity cannot be attributed to altered expression of TNF receptors or defects in the NF-кB or AKT pathways, known anti-apoptotic signal transduction pathways. (In fact, TNF stimulated NF-кB activation provides a major mechanism to account for survival in both wild-type and JNK deficient cells.) However this increased TNF-sensitivity can be attributed to JNK deficiency. Apoptosis is suppressed in JNK deficient cells when transduced with JNK1 retrovirus. These data implicate the JNK signaling pathway in cell survival. The AP-1 family of transcription factors is a target of the JNK signal transduction pathway. In addition JNK is required for the normal expression of the AP-1 family member, JunD. Previous studies have indicated that JunD can mediate survival. Interestingly, JNK deficient and JunD null cells display similar phenotypes: premature senescence and increased sensitivity to TNF induced apoptosis. In fact, the TNF-sensitivity is also suppressed in JNK deficient fibroblasts transduced with JunD retrovirus. Although JunD can replace the survival signaling role of JNK, phosphorylation of JunD is essential to inhibit TNF induced apoptosis. JNK deficient cells transduced with phosphomutant JunD retrovirus maintain TNF-sensitivity. Activated transcription factors modulate gene expression. It is most likely that JunD functions by regulating the expression of key molecules that act to inhibit TNF-stimulated apoptosis. Microarray analysis comparing wild-type with JNK deficient fibroblasts revealed that the expression of the survival gene, cIAP-2, was induced by TNF in only wild-type fibroblasts. Furthermore, protein expression of cIAP-2 was induced by TNF in only wild-type fibroblasts. Analysis of the cIAP-2 promoter revealed two critical NF-кB binding sites and one AP-1 binding site. Luciferase reporter assays indicated key roles for both NF-кB and the AP-1 component, JunD in TNF-induced cIAP-2 gene expression. These experiments establish that the JNK/JunD pathway collaborates with NF-кB pathway to increase the expression of the anti-apoptotic protein cIAP-2 in TNF treated cells. Without this collaboration, the JNK pathway mediates apoptosis. The integration of JNK signaling with other signaling pathways represents a mechanism to account for the dual ability of the JNK pathway to mediate either survival or apoptosis. The dynamic coordination of signals within and between pathways is critical. The future challenge will be to fit the details of individual signaling pathways into the context of signaling networks.
3

The c-Jun NH₂-Terminal Kinase Regulates Jun <em>in vitro</em> and <em>in vivo</em> during the Process of Dorsal Closure: A Dissertation

Sluss, Hayla Karen 12 December 1997 (has links)
Tyrosine phosphorylation of proteins by protein tyrosine kinases is an important step in initiating mitogenic signal transduction pathways. The receptor tyrosine kinases represent a class of protein kinases that employ phosphorylation cascades to transmit a signal generated at the cell surface. The AP-1 transcription factor is a common target of receptor tyrosine kinase activation, transformation by Ras-like proteins and activation of the MAP kinase pathway. The AP-1 complex contains a dimer of Jun proteins or a heterodimer of Jun and Fos or other bZip proteins. The transcriptional activation of Jun is enhanced by phosphorylation on residues Ser-63 and Ser-73. Therefore, identifying the regulatory proteins kinases of Jun would be an important link in signaling from the upstream cell surface events to downstream events, such as gene expression. The JNK1 protein kinase was identified and phosphorylates c-Jun at these sites. The JNK1 protein is a member of the JNK group of protein kinases, which are activated in response to UV treatment. JNK1 is the 46 kDa isoform, and the isolation of the 55 kDa isoform is described in this thesis. Furthermore, a role for JNK was established in Drosophila. Drosphila JNK (DJNK) is essential for the process of dorsal closure. The JNK protein kinases are involved in cytokine signaling, response to environmental stress and development.
4

The Apoptotic Activity of c-Jun NH<sub>2</sub>-Terminal Kinase Signal Transduction: A Dissertation

Lei, Kui 18 September 2002 (has links)
Stress-induced JNK activity has been implicated in apoptosis. Gene disruption studies have established that JNK signaling is required for some forms of apoptosis. However, it was not clear whether and how JNK was able to deliver an apoptotic signal, because JNK and its regulated-downstream transcriptional factors control a variety of gene activities and multiple biological functions. I have studied this question by using constitutively activated JNK that is independent of upstream signaling. The results indicate that activated JNK is sufficient to deliver an apoptotic signal that causes cytochrome c release from mitochondria. Significantly, this apoptotic signal requires pro-apoptotic Bc12 proteins of Bax and Bak to mediate the downstream apoptotic program. This part of work established the apoptotic activity of JNK signal transduction and the key downstream components of JNK-stimulated apoptotic signal. Two pathways are known to mediate apoptosis in response to apoptotic stimulations: death receptor pathway and mitochondrial pathway. It has been established that JNK is required for the apoptosis mediated by mitochondria in response to ultraviolet irradiation and some genetic stress. However, the mechanisms are not fully understood. It is well known that Bax and Bak are indispensable downstream components leading to apoptotic mitochondrial changes and that other Bc12 family members can regulate the relative apoptotic activity of Bax and Bak. In conjunction with the first part of the research, I have investigated the hypothesis that JNK-mediated regulation of BH3-only Bc12 members contributes to its apoptotic activity. These results indicate that JNK-mediated phosphorylation of Bim and Bmf promotes the release of these proapoptotic BH3-only proteins from their sequestration and these factors become free to initiate apoptosis. This part of work established one mechanism of activated JNK-stimulated apoptosis. This mechanism may contribute to the phenomenon that Jnk1-/-Jnk2-/- fibroblasts are resistant to ultraviolet irradiation-induced apoptosis.
5

Role of MAP4K4 Signaling in Adipocyte and Macrophage Derived Inflammation: A Dissertation

Tesz, Gregory J. 22 July 2008 (has links)
Human obesity is increasing globally at an impressive rate. The rise in obesity has led to an increase in diseases associated with obesity, such as type 2 diabetes. A major prerequisite for this disease is the development of insulin resistance in the muscle and adipose tissues. Interestingly, experiments in rodent models suggest that adipocytes and macrophages can profoundly influence the development of insulin resistance. Accordingly, the number of adipose tissue macrophages increases substantially during the development of obesity. Numerous research models have demonstrated that macrophages promote insulin resistance by secreting cytokines, like TNFα, which impair whole body insulin sensitivity and adipose tissue function. Additionally, enhancements of murine adipose function, particularly glucose disposal, prevent the development of insulin resistance in mice on a high fat diet. Thus, mechanisms which enhance adipose function or attenuate macrophage inflammation are of interest. Our lab previously identified mitogen activated protein kinase kinase kinase kinase 4 (MAP4K4) as a potent negative regulator of adipocyte function. In these studies, TNFα treatment increased the expression of adipocyte MAP4K4. Furthermore, the use of small interfering RNAs (siRNA) to block the increase in MAP4K4 expression protected adipocytes from some of the adverse effects of TNFα. Because MAP4K4 is a potent negative regulator of adipocyte function, an understanding of the mechanisms by which TNFα regulates MAP4K4 expression is of interest. Thus, for the first part of this thesis, I characterized the signaling pathways utilized by TNFα to regulate MAP4K4 expression in cultured adipocytes. Here I show that TNFα increases MAP4K4 expression through a pathway requiring the transcription factors activating transcription factor 2 (ATF2) and the JUN oncogene (cJUN). Through TNFα receptor 1 (TNFR1), but not TNFR2, TNFα increases MAP4K4 expression. This increase is highly specific to TNFα, as the inflammatory agents IL-1β, IL-6 and LPS did not affect MAP4K4 expression. In agreement, the activation of cJUN and ATF2 by TNFα is sustained over a longer period of time than by IL-1β in adipocytes. Finally, MAP4K4 is unique as the expression of other MAP kinases tested fails to change substantially with TNFα treatment. For the second part of this thesis, I assessed the role of MAP4K4 in macrophage inflammation in vitro and in vivo. To accomplish this task, pure β1,3-D-glucan shells were used to encapsulate siRNA. Glucan shells were utilized because they are effectively taken up by macrophages which express the dectin-1 receptor and they survive oral delivery. I demonstrate that these β1,3-D-glucan encapsulated RNAi particles (GeRPs) are efficiently phagocytosed and capable of mediating the silencing of multiple macrophage genes in vitro and in vivo. Importantly, oral treatment of mice with GeRPs fails to increase plasma IFNγ and TNFα or alter serum AST and ALT levels. Orally administered GeRPs are found in macrophages isolated from the spleen, liver, lung and peritoneal cavity and mediate macrophage gene silencing in these tissues. Utilizing this technology, I reveal that MAP4K4 augments the expression of TNFα in macrophages following LPS treatment. Oral delivery of MAP4K4 siRNA in GeRPs silences MAP4K4 expression by 70% and reduces basal TNFα and IL-1β expression significantly. The depletion of MAP4K4 in macrophages protects 40% of mice from death in the LPS/D- galactosamine (D-GalN) model of septicemia, compared to less than 10% in the control groups. This protection associates with significant decreases in serum TNFα concentrations following LPS/D-GalN challenge. Consistent with reduced macrophage inflammation, hepatocytes from mice treated orally with GeRPs targeting MAP4K4 present less apoptosis following LPS/D-GalN treatment. Thus, MAP4K4 is an important regulator of macrophage TNFα production in response to LPS. The results presented here add to the knowledge of MAP4K4 action in adipocyte and macrophage inflammation substantially. Prior to these studies, the mechanism by which TNFα controlled MAP4K4 expression in adipocytes remained unknown. Considering that MAP4K4 is a negative regulator of adipocyte function, identifying the mechanisms that control MAP4K4 expression was of interest. Furthermore, the role of macrophage MAP4K4 in LPS stimulated TNFα production was also unknown. To address this question in vivo, new technology specifically targeting macrophages was needed. Thus, we developed a technology for non toxic and highly specific macrophage gene silencing in vivo. Considering that macrophages mediate numerous diseases, the application of GeRPs to these disease models is an exciting new possibility.

Page generated in 0.325 seconds