Spelling suggestions: "subject:"jacobian free evanskrylov"" "subject:"jacobian tree evanskrylov""
1 |
Analyse de méthodes de résolution parallèles d’EDO/EDA raides / Analysis of parallel methods for solving stiff ODE and DAEGuibert, David 10 September 2009 (has links)
La simulation numérique de systèmes d’équations différentielles raides ordinaires ou algébriques est devenue partie intégrante dans le processus de conception des systèmes mécaniques à dynamiques complexes. L’objet de ce travail est de développer des méthodes numériques pour réduire les temps de calcul par le parallélisme en suivant deux axes : interne à l’intégrateur numérique, et au niveau de la décomposition de l’intervalle de temps. Nous montrons l’efficacité limitée au nombre d’étapes de la parallélisation à travers les méthodes de Runge-Kutta et DIMSIM. Nous développons alors une méthodologie pour appliquer le complément de Schur sur le système linéarisé intervenant dans les intégrateurs par l’introduction d’un masque de dépendance construit automatiquement lors de la mise en équations du modèle. Finalement, nous étendons le complément de Schur aux méthodes de type "Krylov Matrix Free". La décomposition en temps est d’abord vue par la résolution globale des pas de temps dont nous traitons la parallélisation du solveur non-linéaire (point fixe, Newton-Krylov et accélération de Steffensen). Nous introduisons les méthodes de tirs à deux niveaux, comme Parareal et Pita dont nous redéfinissons les finesses de grilles pour résoudre les problèmes raides pour lesquels leur efficacité parallèle est limitée. Les estimateurs de l’erreur globale, nous permettent de construire une extension parallèle de l’extrapolation de Richardson pour remplacer le premier niveau de calcul. Et nous proposons une parallélisation de la méthode de correction du résidu. / This PhD Thesis deals with the development of parallel numerical methods for solving Ordinary and Algebraic Differential Equations. ODE and DAE are commonly arising when modeling complex dynamical phenomena. We first show that the parallelization across the method is limited by the number of stages of the RK method or DIMSIM. We introduce the Schur complement into the linearised linear system of time integrators. An automatic framework is given to build a mask defining the relationships between the variables. Then the Schur complement is coupled with Jacobian Free Newton-Krylov methods. As time decomposition, global time steps resolutions can be solved by parallel nonlinear solvers (such as fixed point, Newton and Steffensen acceleration). Two steps time decomposition (Parareal, Pita,...) are developed with a new definition of their grids to solved stiff problems. Global error estimates, especially the Richardson extrapolation, are used to compute a good approximation for the second grid. Finally we propose a parallel deferred correction
|
2 |
Analyse de méthodes de résolution parallèles d'EDO/EDA raidesGuibert, David 10 September 2009 (has links) (PDF)
La simulation numérique de systèmes d'équations différentielles raides ordinaires ou algébriques est devenue partie intégrante dans le processus de conception des systèmes mécaniques à dynamiques complexes. L'objet de ce travail est de développer des méthodes numériques pour réduire les temps de calcul par le parallélisme en suivant deux axes : interne à l'intégrateur numérique, et au niveau de la décomposition de l'intervalle de temps. Nous montrons l'efficacité limitée au nombre d'étapes de la parallélisation à travers les méthodes de Runge-Kutta et DIMSIM. Nous développons alors une méthodologie pour appliquer le complément de Schur sur le système linéarisé intervenant dans les intégrateurs par l'introduction d'un masque de dépendance construit automatiquement lors de la mise en équations du modèle. Finalement, nous étendons le complément de Schur aux méthodes de type "Krylov Matrix Free". La décomposition en temps est d'abord vue par la résolution globale des pas de temps dont nous traitons la parallélisation du solveur non-linéaire (point fixe, Newton-Krylov et accélération de Steffensen). Nous introduisons les méthodes de tirs à deux niveaux, comme Parareal et Pita dont nous redéfinissons les finesses de grilles pour résoudre les problèmes raides pour lesquels leur efficacité parallèle est limitée. Les estimateurs de l'erreur globale, nous permettent de construire une extension parallèle de l'extrapolation de Richardson pour remplacer le premier niveau de calcul. Et nous proposons une parallélisation de la méthode de correction du résidu.
|
3 |
A fast and efficient solver for viscous-plastic sea ice dynamicsSeinen, Clint 04 October 2017 (has links)
Sea ice plays a key role in the global climate system. Indeed, through the albedo
effect it reflects significant solar radiation away from the oceans, while it also plays a
key role in the momentum and heat transfer between the atmosphere and ocean by
acting as an insulating layer between the two. Furthermore, as more sea ice melts due
to climate change, additional fresh water is released into the upper oceans, affecting
the global circulation of the ocean as a whole. While there has been significant effort
in recent decades, the ability to simulate sea ice has lagged behind other components
of the climate system and most Earth System Models fail to capture the observed
losses of Arctic sea ice, which is largely attributed to our inability to resolve sea
ice dynamics. The most widely accepted model for sea ice dynamics is the Viscous-
Plastic (VP) rheology, which leads to a very non-linear set of partial differential
equations that are known to be intrinsically difficult to solve numerically. This work
builds on recent advances in solving these equations with a Jacobian-Free Newton-
Krylov (JFNK) solver. We present an improved JFNK solver, where a fully second
order discretization is achieved via the Crank Nicolson scheme and consistency is
improved via a novel approach to the rheology term. More importantly, we present a
significant improvement to the Jacobian approximation used in the Newton iterations,
and partially form the action of the matrix by expressing the linear and nearly linear
terms in closed form and approximating the remaining highly non-linear term with
a second order approximation of its Gateaux derivative. This is in contrast with the
previous approach which used a first order approximation for the Gateaux derivative
of the whole functional. Numerical tests on synthetic equations confirm the theoretical
convergence rate and demonstrate the drastic improvements seen by using a second
order approximation in the Gateaux derivative. To produce a fast and efficient solver
for VP sea ice dynamics, the improved JFNK solver is then coupled with a non-
oscillatory, central differencing scheme for transporting sea ice as well as a novel
method for tracking the ice domain using a level set method. Two idealized test
cases are then presented and simulation results discussed, demonstrating the solver’s
ability to efficiently produce Viscous-Plastic, physically motivated solutions. / Graduate
|
4 |
[pt] APLICAÇÕES DA EQUAÇÃO DO CALOR NA INDÚSTRIA DO PETRÓLEO / [en] APPLICATIONS OF HEAT EQUATION IN OIL INDUSTRYIAGO ARCAS DA FONSECA 17 December 2020 (has links)
[pt] Neste trabalho focamos sobre alguns modelos matemáticos na área do
petróleo, com o objetivo de propor um modelo inicial de simulador numérico
de reservatórios. Inicialmente apresentamos uma EDP do calor não-linear
com um termo fonte de calor constante, estudada para o domínio sendo uma
placa plana quadrada homogênea e heterogênea, onde aplicamos soluções
numéricas utilizando o método das diferenças finitas implícito. Abordamos
o problema de refinamento da malha no entorno dos poços utilizando o
método JFNK (Jacobian-Free Newton-Krylov), que aumenta a eficiência
computacional através de uma aproximação para a matriz Jacobiana. Por
fim resolvemos um sistema de EDPs não-lineares que representam o escoamento
bifásico de água e óleo, constituído por equações de transporte em
termos da pressão e da saturação. Fizemos simulações numéricas de alguns
casos conhecidos e os resultados mostraram uma boa qualidade no nosso
método. / [en] In this work we focus on the numerical approximation of some
mathematical models in the oil field. First, we present a non-linear heat
equation with a constant heat source term, studied for the domain of a
homogeneous and heterogeneous square domain, where we apply numerical
solutions using an implicit finite difference method. We approach the
problem of mesh refinement around the wells using the JFNK (Jacobian-
Free Newton-Krylov) method, which improves the computational efficiency
through an approximation to the Jacobian matrix. Finally, we solve a system
of non-linear EDPs that represent the two-phase flow of water and oil,
consisting of equations of transport in terms of pressure and saturation.
Numerical simulations for some known cases showed accurate approximation
of our method.
|
Page generated in 0.0453 seconds