• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 15
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

STRATIGRAPHIC REEVALUATION OF MOLLIES NIPPLE, KANE COUNTY, UTAH, USA TO BETTER UNDERSTAND THE ORIGIN OF ALUNITE AND JAROSITE CEMENTS

Walker, Jordan Thomas 01 August 2022 (has links)
Mollies Nipple is a butte located in Kane County, Utah and is part of Grand Staircase-Escalante National Monument (GSENM). Mollies Nipple is now of particular interest to the Mars research community because of the presence of unusual diagenetic alunite and jarosite minerals. These minerals are present in sedimentary environments on Mars and have been used to interpret the diagenetic and depositional environments as acidic and/or arid. On Earth, these minerals are present in modern acid saline lakes, fumaroles, or acid mine drainage, but not commonly as diagenetic cements. The butte was mapped as Navajo Sandstone via photogeologic mapping, but the apex is 200 m higher than the surrounding upper extent of that unit in adjacent areas and there are some lithological inconsistencies that suggest the caprock may be a different overlying formation. Correctly understanding the diagenetic and depositional history of Mollies Nipple will inform future studies on Mars and has the potential to change the paradigm of these interpreted jarosite-bearing Martian environments. Stratigraphic sections were measured in the field and samples were collected for laboratory analysis. The dominant lithofacies is a cross-bedded quartz arenite. Structureless quartz arenite to wacke with lenticular green-gray quartz wacke (ash) is also present. Jarosite cement is common in upper sections of Mollies Nipple and is present, but sparse, in lower section of Mollies Nipple. Alunite is present in the upper section of Mollies Nipple. ANOVA conducted on point count data from samples collected from Nipple and representative samples of potential formations at Mollies Nipple do not differentiate between the possible formation candidate and Navajo Sandstone. Based on distribution of lithofacies, comparison with adjacent outcrops of Temple Cap Formation, Page Sandstone, and Carmel Formation, we conclude that the caprock at Mollies Nipple is most likely the Temple Cap Formation.
12

Fluids in Planetary Systems

Elwood Madden, Megan Erica 30 June 2005 (has links)
From the early stages of planetary accretion and differentiation to the geomorphology of planetary surfaces and the evolution of life, fluids play an integral role in shaping planetary bodies. Fluid properties and processes were investigated under a range of planetary conditions through (1) experimental simulations of impact events and petrographic analysis of terrestrial impactites to determine the effects of shock metamorphism on fluid inclusion properties; and (2) numerical thermodynamic equilibrium modeling of aqueous alteration processes on Mars. Results of impact experiments and analyses of fluid inclusions in rocks from the Ries Crater and Meteor Crater indicate that fluid inclusions reequilibrate systematically with increasing shock pressure: stretching and decrepitating under low shock pressure conditions and collapsing at moderate shock pressures. Above the Hugenoit Elastic Limit, fluid inclusion vesicles are destroyed due to plastic deformation and phase transitions within the host mineral. This suggests that impact processing may result in the destruction of fluid inclusions, leading to shock devolatilization of target rocks. In addition, the absence of fluid inclusions in planetary materials does not preclude the presence of fluids on the meteorite's parent body. Thermodynamic modeling of aqueous alteration of basalt under Mars-relevant conditions provides constraints on the conditions under which secondary sulfates are likely to have formed. The results of this study indicate that jarosite is likely to form as a result of water-limited chemical weathering of basalts. Magnesium sulfates are only predicted to form as a result of evaporation. This suggests that in order to form the alteration assemblages recently observed by the Mars Exploration Rover Opportunity at Meridiani Planum, water must have been removed from the system after a geologically short period of time, before fluids came into equilibrium with mafic surface materials and became alkaline. / Ph. D.
13

Oxidative dissolution of chalcopyrite in ferric media: an x-ray photoelectron spectroscopy study

Parker, Andrew Donald January 2008 (has links)
The oxidative dissolution of chalcopyrite in ferric media often produces incomplete copper recoveries. The incomplete recoveries have been attributed to inhibition caused by the formation of a metal deficient sulphide and the deposition of elemental sulphur and jarosite. Although these phases have been qualitatively identified on the surface of chalcopyrite, none have been quantitatively identified. The aim of the project was to quantitatively analyse the surface before and after oxidative dissolution, with X-ray photoelectron spectroscopy (XPS), and to use the phases identified as the basis for mechanisms of dissolution and inhibition. / XPS analysis was performed on chalcopyrite massive fractured under anaerobic atmosphere and chalcopyrite massive and concentrate oxidised in 0.1 M ferric sulphate (pH 1.9) and 0.2 M ferric chloride (pH 1.6) at 50, 65 and 80ºC. Quantitative XPS analysis of the chalcopyrite surfaces required the development of programs that accounted for the observed XPS spectra. The output of these programs was used to construct profiles of the chalcopyrite surfaces and the deposited phases. These surface profiles were correlated with copper recoveries determined for chalcopyrite concentrate dissolution under the same conditions. / The surface of chalcopyrite before oxidative dissolution reconstructs to form a `pyritic' disulphide phase. This phase is oxidised in ferric media to form thiosulphate via the incorporation of oxygen atoms from the hydration sphere. The thiosulphate reacts in the oxidising conditions of low pH to form elemental sulphur, sulphite and sulphate. The sulphate complexes with ferric to produce hydronium jarosite. This reaction occurs at the surface during the initial stages of dissolution and in the bulk solution during the latter stages. This precipitation of hydronium jarosite during the latter stages of dissolution corresponds to inhibition of the dissolution reaction. It is therefore concluded hydronium jarosite is responsible for inhibiting the oxidative dissolution of chalcopyrite in ferric media. / The identification of hydronium jarosite as the inhibiting phase is consistent with the industrial practice of removing `excess' iron from the ferric solution before oxidative dissolution. However, additional iron and sulphate are generated at the chalcopyrite surface during oxidative dissolution. These high iron and sulphate concentrations combine with the low pH and high temperatures favoured for the oxidative dissolution of chalcopyrite to produce ideal conditions for jarosite precipitation. Therefore, pH must be lowered further to prevent jarosite precipitation and enhance copper recoveries from chalcopyrite in ferric media.
14

Sulfide oxidation in some acid sulfate soil materials

Ward, Nicholas John Unknown Date (has links)
This thesis examines sulfide oxidation in 4 physically and mineralogically diverse acid sulfate soil (ASS) materials collected from coastal floodplain sites in north-eastern New South Wales. The aim of this study is to gain further understanding of the process of sulfide oxidation in ASS materials, which will allow improved and more effective management strategies to be applied to these materials. The process of sulfide oxidation was examined using laboratory incubation experiments. The oxidation of pyrite was the primary cause of initial acidification of the ASS materials studied. Although the acid volatile sulfur fraction increased in concentration by an order of magnitude over the initial 8 days of incubation, the subsequent oxidation of this fraction did not result in substantial acidification. Sulfate (SO42-) was the dominant sulfur species produced from sulfide oxidation, however, water-soluble SO42- was a poor indicator of the extent of sulfide oxidation. The sulfoxyanion intermediates thiosulfate (S2O32-) and tetrathionate(S4O62-) were only detected in the early stages of incubation, and their relative abundance appeared to be pH dependent. The diminishing presence of these 2 sulfur species as oxidation progressed was indicative that ferric iron (Fe3+) and bacterial catalysis were driving the oxidation processes. The rate of sulfide oxidation, and consequent rate of acidification, was highly dependent on the soil pH and oxygen availability. Accelerated sulfide oxidation was only observed at low pH (i.e. pH < 4.0) when oxygen availability was not limited. The application of sub-optimal amounts of neutralising agents prevented severe soil acidification in the short-term (i.e. up to 2 months), but had little effect on decreasing the rate of sulfide oxidation and acidification in the long-term. Sub-optimal amounts of CaCO3 accelerated sulfide oxidation and acidification of the peaty marcasitic ASS material resulting in elevated soluble Fe and Al concentrations. For some of the ASS materials, sub-optimal applications of seawater-neutralised bauxite refinery residue (SNBRR) also resulted in elevated soluble Al concentrations. The response of partially-oxidised ASS materials to the exclusion of oxygen was variable. The rate of sulfide oxidation, acidification and the production of soluble oxidation products generally decreased markedly when subjected to anoxia. However, especially in highly acidic ASS materials (i.e. pH < 3.5), sulfide oxidation and acidification generally occurred (albeit at much slower rates), most probably due to oxidation by Fe3+. Rapid sulfide re-formation occurred in the peat ASS material that had been oxidised for 63 days, with 0.47% reduced inorganic sulfur (SCR) formed over 60 days of anoxia. Biogeochemical sulfide formation consumes acidity, however, sulfide re-formation was ineffective in reversing acidification under the conditions of this experiment. The peroxide oxidation methods examined were method dependent and substantially underestimated peroxide oxidisable sulfur, sulfidic acidity and net acidity. The precipitation of jarosite during peroxide oxidation was a major factor contributing to the underestimation in these ASS materials. Clay mineral dissolution may contribute towards the underestimation of both sulfidic and net acidity using peroxide oxidation methods. The atmospheric loss of sulfur and acidity was also identified as a possible additional interference. This study has shown that the initial pH of an ASS material is a useful indicator (additional to those already used) of the potential environmental hazard of an ASS material when oxygen is expected to be non-limiting, such as when ASS materials are excavated and stockpiled. The recommended action criteria need to be reassessed as the data indicate that the current criteria are conservative for alkaline and neutral ASS materials, but should be lowered for all acidic ASS materials (i.e. pH < 5.5) to 0.03% sulfide regardless of texture. Alternative strategies are necessary for the management of ASS materials that are subject to oxidation when the addition of optimal rates of neutralising materials cannot be ensured. The treatment of sites containing actual ASS materials by management strategies that rely on oxygen exclusion need to be accompanied by strategies that include either acid neutralisation or containment in order to reduce acid export from the site. The peroxide oxidation methods examined were subject to substantial interferences, and consequently are unable to reliably provide accurate measurements of the reduced inorganic sulfur fraction, sulfidic acidity, and net acidity in ASS materials.
15

Sulfide oxidation in some acid sulfate soil materials

Ward, Nicholas John Unknown Date (has links)
This thesis examines sulfide oxidation in 4 physically and mineralogically diverse acid sulfate soil (ASS) materials collected from coastal floodplain sites in north-eastern New South Wales. The aim of this study is to gain further understanding of the process of sulfide oxidation in ASS materials, which will allow improved and more effective management strategies to be applied to these materials. The process of sulfide oxidation was examined using laboratory incubation experiments. The oxidation of pyrite was the primary cause of initial acidification of the ASS materials studied. Although the acid volatile sulfur fraction increased in concentration by an order of magnitude over the initial 8 days of incubation, the subsequent oxidation of this fraction did not result in substantial acidification. Sulfate (SO42-) was the dominant sulfur species produced from sulfide oxidation, however, water-soluble SO42- was a poor indicator of the extent of sulfide oxidation. The sulfoxyanion intermediates thiosulfate (S2O32-) and tetrathionate(S4O62-) were only detected in the early stages of incubation, and their relative abundance appeared to be pH dependent. The diminishing presence of these 2 sulfur species as oxidation progressed was indicative that ferric iron (Fe3+) and bacterial catalysis were driving the oxidation processes. The rate of sulfide oxidation, and consequent rate of acidification, was highly dependent on the soil pH and oxygen availability. Accelerated sulfide oxidation was only observed at low pH (i.e. pH < 4.0) when oxygen availability was not limited. The application of sub-optimal amounts of neutralising agents prevented severe soil acidification in the short-term (i.e. up to 2 months), but had little effect on decreasing the rate of sulfide oxidation and acidification in the long-term. Sub-optimal amounts of CaCO3 accelerated sulfide oxidation and acidification of the peaty marcasitic ASS material resulting in elevated soluble Fe and Al concentrations. For some of the ASS materials, sub-optimal applications of seawater-neutralised bauxite refinery residue (SNBRR) also resulted in elevated soluble Al concentrations. The response of partially-oxidised ASS materials to the exclusion of oxygen was variable. The rate of sulfide oxidation, acidification and the production of soluble oxidation products generally decreased markedly when subjected to anoxia. However, especially in highly acidic ASS materials (i.e. pH < 3.5), sulfide oxidation and acidification generally occurred (albeit at much slower rates), most probably due to oxidation by Fe3+. Rapid sulfide re-formation occurred in the peat ASS material that had been oxidised for 63 days, with 0.47% reduced inorganic sulfur (SCR) formed over 60 days of anoxia. Biogeochemical sulfide formation consumes acidity, however, sulfide re-formation was ineffective in reversing acidification under the conditions of this experiment. The peroxide oxidation methods examined were method dependent and substantially underestimated peroxide oxidisable sulfur, sulfidic acidity and net acidity. The precipitation of jarosite during peroxide oxidation was a major factor contributing to the underestimation in these ASS materials. Clay mineral dissolution may contribute towards the underestimation of both sulfidic and net acidity using peroxide oxidation methods. The atmospheric loss of sulfur and acidity was also identified as a possible additional interference. This study has shown that the initial pH of an ASS material is a useful indicator (additional to those already used) of the potential environmental hazard of an ASS material when oxygen is expected to be non-limiting, such as when ASS materials are excavated and stockpiled. The recommended action criteria need to be reassessed as the data indicate that the current criteria are conservative for alkaline and neutral ASS materials, but should be lowered for all acidic ASS materials (i.e. pH < 5.5) to 0.03% sulfide regardless of texture. Alternative strategies are necessary for the management of ASS materials that are subject to oxidation when the addition of optimal rates of neutralising materials cannot be ensured. The treatment of sites containing actual ASS materials by management strategies that rely on oxygen exclusion need to be accompanied by strategies that include either acid neutralisation or containment in order to reduce acid export from the site. The peroxide oxidation methods examined were subject to substantial interferences, and consequently are unable to reliably provide accurate measurements of the reduced inorganic sulfur fraction, sulfidic acidity, and net acidity in ASS materials.

Page generated in 0.0366 seconds